In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a Vitali set is an elementary example of a set of
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s that is not
Lebesgue measurable
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it coin ...
, found by
Giuseppe Vitali
Giuseppe Vitali (26 August 1875 – 29 February 1932) was an Italian mathematician who worked in several branches of mathematical analysis. He gives his name to several entities in mathematics, most notably the Vitali set with which he was the fi ...
in 1905. The Vitali theorem is the
existence theorem
In mathematics, an existence theorem is a theorem which asserts the existence of a certain object. It might be a statement which begins with the phrase " there exist(s)", or it might be a universal statement whose last quantifier is existential ...
that there are such sets. Each Vitali set is
uncountable
In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger tha ...
, and there are
uncountably many Vitali sets. The proof of their existence depends on the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
.
Measurable sets
Certain sets have a definite 'length' or 'mass'. For instance, the
interval , 1
The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
is deemed to have length 1; more generally, an interval
'a'', ''b'' ''a'' ≤ ''b'', is deemed to have length ''b'' − ''a''. If we think of such intervals as metal rods with uniform density, they likewise have well-defined masses. The set
, 1
The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
∪
, 3is composed of two intervals of length one, so we take its total length to be 2. In terms of mass, we have two rods of mass 1, so the total mass is 2.
There is a natural question here: if ''E'' is an arbitrary subset of the real line, does it have a 'mass' or 'total length'? As an example, we might ask what is the mass of the set of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example,
The set of all ...
s between 0 and 1, given that the mass of the interval
, 1
The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
is 1. The rationals are
dense
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be use ...
in the reals, so any value between and including 0 and 1 may appear reasonable.
However the closest generalization to mass is
sigma additivity
In mathematics, an additive set function is a function \mu mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, \mu(A \cup B) = \mu(A) + \mu(B). If this ad ...
, which gives rise to the
Lebesgue measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
. It assigns a measure of ''b'' − ''a'' to the interval
'a'', ''b'' but will assign a measure of 0 to the set of rational numbers because it is
countable
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
. Any set which has a well-defined Lebesgue measure is said to be "measurable", but the construction of the Lebesgue measure (for instance using
Carathéodory's extension theorem) does not make it obvious whether non-measurable sets exist. The answer to that question involves the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
.
Construction and proof
A Vitali set is a subset
of the
interval