Virtually Imaged Phased Array
   HOME

TheInfoList



OR:

A virtually imaged phased array (VIPA) is an angular dispersive device that, like a
prism PRISM is a code name for a program under which the United States National Security Agency (NSA) collects internet communications from various U.S. internet companies. The program is also known by the SIGAD . PRISM collects stored internet ...
or a
diffraction grating In optics, a diffraction grating is an optical grating with a periodic structure that diffraction, diffracts light, or another type of electromagnetic radiation, into several beams traveling in different directions (i.e., different diffractio ...
, splits light into its
spectral ''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Mark Clyne, with Max Marti ...
components. The device works almost independently of
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
. In contrast to prisms or regular diffraction gratings, the VIPA has a much higher angular dispersion but has a smaller
free spectral range Free spectral range (FSR) is the spacing in optical frequency or wavelength between two successive reflected or transmitted optical intensity maxima or minima of an interferometer or diffractive optical element. The FSR is not always represent ...
. This aspect is similar to that of an
Echelle grating An echelle grating (from French ''échelle'', meaning "ladder") is a type of diffraction grating characterised by a relatively low groove density, but a groove shape which is optimized for use at high incidence angles and therefore in high diffract ...
, since it also uses high diffraction orders. To overcome this disadvantage, the VIPA can be combined with a diffraction grating. The VIPA is a compact spectral disperser with high
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
resolving power.


Basic mechanism

In a virtually imaged
phased array In antenna (radio), antenna theory, a phased array usually means an electronically scanned array, a computer-controlled Antenna array, array of antennas which creates a radio beam, beam of radio waves that can be electronically steered to point ...
, the phased array is the optical analogue of a
phased array antenna In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving th ...
at radio frequencies. Unlike a diffraction grating which can be interpreted as a real phased array, in a virtually imaged phased array the phased array is created in a
virtual image In optics, the ''image'' of an object is defined as the collection of Focus (optics), focus points of Ray (optics), light rays coming from the object. A ''real image'' is the collection of focus points made by Vergence (optics), converging ray ...
. More specifically, the optical phased array is virtually formed with multiple virtual images of a light source. This is the fundamental difference from an Echelle grating, where a similar phased array is formed in the real space. The virtual images of a light source in the VIPA are automatically aligned exactly at a constant interval, which is critical for optical interference. This is an advantage of the VIPA over an Echelle grating. When the output light is observed, the virtually imaged phased array works as if light were emitted from a real phased array.


History and applications

VIPA was proposed and named by Shirasaki in 1996. Prior to the publication in the paper, a preliminary presentation was given by Shirasaki at a conference. This presentation was reported in Laser Focus World. The details of this new approach to producing angular dispersion were described in the patent. Since then, in the first ten years, the VIPA was of particular interest in the field of optical fiber communication technology. The VIPA was first applied to optical
wavelength division multiplexing In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of laser light. This techni ...
(WDM) and a wavelength demultiplexer was demonstrated for a channel spacing of 0.8 nm, which was a standard channel spacing at the time. Later, a much smaller channel separation of 24 pm and a 3 dB bandwidth of 6 pm were achieved by Weiner in 2005 at 1550 nm wavelength range. For another application, by utilizing the wavelength-dependent length of the light path due to the angular dispersion of the VIPA, the compensation of
chromatic dispersion Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this commo ...
of fibers was studied and demonstrated (Shirasaki, 1997). The compensation was further developed for tunable systems by using adjustable mirrors or a spatial light modulator (Weiner, 2006). Using the VIPA, compensation of
polarization mode dispersion Polarization mode dispersion (PMD) is a form of modal dispersion where two different polarizations of light in a waveguide, which normally travel at the same speed, travel at different speeds due to random imperfections and asymmetries, causi ...
was also achieved (Weiner, 2008). Furthermore, pulse shaping using the combination of a VIPA for high-resolution wavelength splitting/recombining and a SLM was demonstrated (Weiner, 2010). A drawback of the VIPA is its limited free spectral range due to the high diffraction order. To expand the functional wavelength range, Shirasaki combined a VIPA with a regular diffraction grating in 1997 to provide a broadband two-dimensional spectral disperser. This configuration can be a high performance substitute for diffraction gratings in many grating applications. After the mid 2000s, the two-dimensional VIPA disperser has been used in various fields and devices, such as high-resolution WDM (Weiner, 2004), a laser frequency comb (Diddams, 2007), a spectrometer (Nugent-Glandorf, 2012), astrophysical instruments (Le Coarer, 2017, Bourdarot, 2018, Delboulbé, 2022, and Stacey, 2024), Brillouin spectroscopy in biomechanics (Scarcelli, 2008, Rosa, 2018, and Margueritat, 2020), other Brillouin spectroscopy (Loubeyre, 2022 and Wu, 2023), beam scanning (Ford, 2008), microscopy (Jalali, 2009), tomography imaging (Ellerbee, 2014), metrology (Bhattacharya, 2015), fiber laser (Xu, 2020), LiDAR (Fu, 2021), and surface measurement (Zhu, 2022).


Structure and operational principle

The main component of a VIPA is a glass plate whose normal is slightly tilted with respect to the input light. One side (light input side) of the glass plate is coated with a 100% reflective mirror and the other side (light output side) is coated with a highly reflective but partially transmissive mirror. The side with the 100% reflective mirror has an anti-reflection coated light entrance area, through which a light beam enters the glass plate. The input light is line-focused to a line (focal line) on the partially transmissive mirror on the light output side. A typical line-focusing lens is a
cylindrical lens A cylindrical lens is a lens (optics), lens which Focus (optics), focuses light into a line instead of a point as a Lens (optics), spherical lens would. The curved face or faces of a cylindrical lens are sections of a Cylinder (geometry), cylinde ...
, which is also part of the VIPA. The light beam is diverging after the
beam waist In optics, a Gaussian beam is an idealized Light beam, beam of electromagnetic radiation whose Envelope (waves), amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian irradiance, intensity (ir ...
located at the line-focused position. After the light enters the glass plate through the light entrance area, the light is reflected at the partially transmissive mirror and the 100% reflective mirror, and thus the light travels back and forth between the partially transmissive mirror and the 100% reflective mirror. It is noted that the glass plate is tilted as a result of its slight rotation where the axis of rotation is the focal line. This rotation/tilt prevents the light from leaving the glass plate out of the light entrance area. Therefore, in order for the optical system to work as a VIPA, there is a critical minimum angle of tilt that allows the light entering through the light entrance area to return only to the 100% reflective mirror. Below this angle, the function of the VIPA is severely impaired. If the tilting angle were zero, the reflected light from the partially transmissive mirror would travel exactly in reverse and exit the glass plate through the light entrance area without being reflected by the 100% reflective mirror. In the figure, refraction at the surfaces of the glass plate was ignored for simplicity. When the light beam is reflected each time at the partially transmissive mirror, a small portion of the light power passes through the mirror and travels away from the glass plate. For a light beam passing through the mirror after multiple reflections, the position of the line-focus can be seen in the virtual image when observed from the light output side. Therefore, this light beam travels as if it originated at a virtual light source located at the position of the line-focus and diverged from the virtual light source. The positions of the virtual light sources for all the transmitted light beams automatically align along the normal to the glass plate with a constant spacing, that is, a number of virtual light sources are superimposed to create an optical phased array. Due to the
interference Interference is the act of interfering, invading, or poaching. Interference may also refer to: Communications * Interference (communication), anything which alters, modifies, or disrupts a message * Adjacent-channel interference, caused by extra ...
of all the light beams, the phased array emits a
collimated light A collimated beam of light or other electromagnetic radiation has parallel ray (optics), rays, and therefore will spread minimally as it propagates. A laser beam is an archetypical example. A perfectly collimated light beam, with no beam divergen ...
beam in one direction, which is at a wavelength dependent angle, and therefore, an angular dispersion is produced.


Wavelength resolution

Similarly to the resolving power of a diffraction grating, which is determined by the number of the illuminated grating elements and the order of diffraction, the resolving power of a VIPA is determined by the reflectivity of the back surface of the VIPA and the thickness of the glass plate. For a fixed thickness, a high reflectivity causes light to stay longer in the VIPA. This creates more virtual sources of light and thus increases the resolving power. On the other hand, with a lower reflectivity, the light in the VIPA is quickly lost, meaning fewer virtual sources of light are superimposed. This results in lower resolving power. For large angular dispersion with high resolving power, the dimensions of the VIPA should be accurately controlled. Fine tuning of the VIPA characteristics was demonstrated by developing an elastomer-based structure (Metz, 2013). A constant reflectivity of the partially transmissive mirror in the VIPA produces a Lorentzian power distribution when the output light is imaged onto a screen, which has a negative effect on the wavelength selectivity. This can be improved by providing the partially transmissive mirror with a linearly decreasing reflectivity. This leads to a
Gaussian Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymo ...
-like power distribution on a screen and improves the wavelength selectivity or the resolving power.


Spectral dispersion law

An analytical calculation of the VIPA was first performed by Vega and Weiner in 2003 based on the theory of
plane waves In physics, a plane wave is a special case of a wave or field: a physical quantity whose value, at any given moment, is constant through any plane that is perpendicular to a fixed direction in space. For any position \vec x in space and any tim ...
and an improved model based on the
Fresnel diffraction In optics, the Fresnel diffraction equation for near-field diffraction is an approximation of the Kirchhoff's diffraction formula, Kirchhoff–Fresnel diffraction that can be applied to the propagation of waves in the near and far field, near fi ...
theory was developed by Xiao and Weiner in 2004.


Commercialization of the VIPA

VIPA devices have been commercialized by LightMachinery as spectral disperser devices or components with various customized design parameters.


References

{{Reflist Spectroscopy Optical components Interferometry