HOME

TheInfoList



OR:

In
nuclear science Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
, the decay chain refers to a series of radioactive decays of different radioactive
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (de ...
s as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly to a stable state, but rather undergo a series of decays until eventually a stable isotope is reached. Decay stages are referred to by their relationship to previous or subsequent stages. A ''parent isotope'' is one that undergoes decay to form a ''daughter isotope''. One example of this is uranium (atomic number 92) decaying into thorium (atomic number 90). The daughter isotope may be stable or it may decay to form a daughter isotope of its own. The daughter of a daughter isotope is sometimes called a ''granddaughter isotope''. The time it takes for a single parent atom to decay to an atom of its daughter isotope can vary widely, not only between different parent-daughter pairs, but also randomly between identical pairings of parent and daughter isotopes. The decay of each single atom occurs spontaneously, and the decay of an initial population of identical atoms over time ''t'', follows a decaying exponential distribution, ''e−λt'', where λ is called a decay constant. One of the properties of an isotope is its
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
, the time by which half of an initial number of identical parent radioisotopes have decayed to their daughters, which is inversely related to λ. Half-lives have been determined in laboratories for many radioisotopes (or radionuclides). These can range from nearly instantaneous (less than 10−21 seconds) to more than 1019 years. The intermediate stages each emit the same amount of radioactivity as the original radioisotope (i.e. there is a one-to-one relationship between the numbers of decays in successive stages) but each stage releases a different quantity of energy. If and when equilibrium is achieved, each successive daughter isotope is present in direct proportion to its half-life; but since its activity is inversely proportional to its half-life, each nuclide in the decay chain finally contributes as many individual transformations as the head of the chain, though not the same energy. For example, uranium-238 is weakly radioactive, but
pitchblende Uraninite, formerly pitchblende, is a radioactive, uranium-rich mineral and ore with a chemical composition that is largely UO2 but because of oxidation typically contains variable proportions of U3O8. Radioactive decay of the uranium causes th ...
, a uranium ore, is 13 times more radioactive than the pure uranium metal because of the radium and other daughter isotopes it contains. Not only are unstable radium isotopes significant radioactivity emitters, but as the next stage in the decay chain they also generate radon, a heavy, inert, naturally occurring radioactive gas. Rock containing thorium and/or uranium (such as some granites) emits radon gas that can accumulate in enclosed places such as basements or underground mines. The quantity of isotopes in the decay chains at a certain time are calculated with the
Bateman equation In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 and ...
.


History

All the elements and isotopes found on Earth, with the exceptions of hydrogen, deuterium, helium, helium-3, and perhaps trace amounts of stable lithium and beryllium isotopes which were created in the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, were created by the s-process or the r-process in stars or stellar collisions, and for those to be today a part of the Earth, must have been created not later than 4.5 billion years ago. All the elements created more than 4.5 billion years ago are termed ''primordial'', meaning they were generated by the universe's stellar processes. At the time when they were created, those that were unstable began decaying immediately. All the isotopes which have half-lives less than 100 million years have been reduced to % or less of whatever original amounts were created and captured by Earth's accretion; they are of trace quantity today, or have decayed away altogether. There are only two other methods to create isotopes: ''artificially'', inside a man-made (or perhaps a natural) reactor, or through decay of a parent isotopic species, the process known as the ''decay chain''. Unstable isotopes decay to their daughter products (which may sometimes be even more unstable) at a given rate; eventually, often after a series of decays, a stable isotope is reached: there are about 200 stable isotopes in the universe. In stable isotopes, light elements typically have a lower ratio of neutrons to protons in their nucleus than heavier elements. Light elements such as helium-4 have close to a 1:1 neutron:proton ratio. The heaviest elements such as lead have close to 1.5 neutrons per proton(e.g. 1.536 in lead-208). No nuclide heavier than lead-208 is stable; these heavier elements have to shed mass to achieve stability, most usually as
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an ato ...
. The other common decay method for isotopes with a high neutron to proton ratio (n/p) is
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
, in which the nuclide changes elemental identity while keeping the same mass and lowering its n/p ratio. For some isotopes with a relatively low n/p ratio, there is an
inverse beta decay Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutr ...
, by which a proton is transformed into a neutron, thus moving towards a stable isotope; however, since fission almost always produces products which are neutron heavy,
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron emis ...
is relatively rare compared to electron emission. There are many relatively short beta decay chains, at least two (a heavy, beta decay and a light,
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
decay) for every discrete weight up to around 207 and some beyond, but for the higher mass elements (isotopes heavier than lead) there are only four pathways which encompass all decay chains. This is because there are just two main decay methods:
alpha radiation Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atomi ...
, which reduces the mass by 4
atomic mass units The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at re ...
(amu), and beta, which does not change the atomic mass at all (just the atomic number and the p/n ratio). The four paths are termed 4n, 4n + 1, 4n + 2, and 4n + 3; the remainder from dividing the atomic mass by four gives the chain the isotope will use to decay. There are other decay modes, but they invariably occur at a lower probability than alpha or beta decay. (It should not be supposed that these chains have no branches: the diagram below shows a few branches of chains, and in reality there are many more, because there are many more isotopes possible than are shown in the diagram.) For example, the third atom of
nihonium-278 Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The ...
synthesised underwent six alpha decays down to
mendelevium-254 Mendelevium (101Md) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 256Md (which was also the first isotope of any element ...
, followed by an electron capture (a form of
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
) to
fermium-254 Fermium (100Fm) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be discovered (in fallout from nuclear testing) was 255Fm in 1952. 250Fm was i ...
, and then a seventh alpha to californium-250, upon which it would have followed the 4n + 2 chain as given in this article. However, the heaviest
superheavy SuperHeavy was a one-off supergroup project consisting of Mick Jagger, Joss Stone, Dave Stewart, A. R. Rahman, and Damian Marley. Stone and Stewart have collaborated in the past with Jagger. Jagger said of the band, "We wanted a convergence ...
nuclides synthesised do not reach the four decay chains, because they reach a spontaneously fissioning nuclide after a few alpha decays that terminates the chain: this is what happened to the first two atoms of nihonium-278 synthesised, as well as to all heavier nuclides produced. Three of those chains have a long-lived isotope (or nuclide) near the top; this long-lived isotope is a bottleneck in the process through which the chain flows very slowly, and keeps the chain below them "alive" with flow. The three long-lived nuclides are uranium-238 (half-life=4.5 billion years), uranium-235 (half-life=700 million years) and thorium-232 (half-life=14 billion years). The fourth chain has no such long lasting bottleneck isotope, so almost all of the isotopes in that chain have long since decayed down to very near the stability at the bottom. Near the end of that chain is bismuth-209, which was long thought to be stable. Recently, however, bismuth-209 was found to be unstable with a half-life of 19 billion billion years; it is the last step before stable thallium-205. In the distant past, around the time that the solar system formed, there were more kinds of unstable high-weight isotopes available, and the four chains were longer with isotopes that have since decayed away. Today we have manufactured extinct isotopes, which again take their former places: plutonium-239, the nuclear bomb fuel, as the major example has a half-life of "only" 24,500 years, and decays by alpha emission into uranium-235. In particular, we have through the large-scale production of neptunium-237 successfully resurrected the hitherto extinct fourth chain. The tables below hence start the four decay chains at isotopes of californium with mass numbers from 249 to 252.


Types of decay

The four most common modes of radioactive decay are:
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an ato ...
,
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
,
inverse beta decay Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutr ...
(considered as both
positron emission Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron emis ...
and electron capture), and
isomeric transition A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ...
. Of these decay processes, only alpha decay changes the
atomic mass The atomic mass (''m''a or ''m'') is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1&nbs ...
number (''A'') of the nucleus, and always decreases it by four. Because of this, almost any decay will result in a nucleus whose atomic mass number has the same
residue Residue may refer to: Chemistry and biology * An amino acid, within a peptide chain * Crop residue, materials left after agricultural processes * Pesticide residue, refers to the pesticides that may remain on or in food after they are applie ...
mod 4, dividing all nuclides into four chains. The members of any possible decay chain must be drawn entirely from one of these classes. All four chains also produce helium-4 as alpha particles are helium-4 nuclei. Three main decay chains (or families) are observed in nature, commonly called the thorium series, the radium or uranium series, and the
actinium Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name ''emanium''; the element got its name by being wrongly identified with a substance And ...
series, representing three of these four classes, and ending in three different, stable isotopes of lead. The mass number of every isotope in these chains can be represented as ''A'' = 4''n'', ''A'' = 4''n'' + 2, and A = 4''n'' + 3, respectively. The long-lived starting isotopes of these three isotopes, respectively thorium-232, uranium-238, and uranium-235, have existed since the formation of the earth, ignoring the artificial isotopes and their decays created since the 1940s. Due to the relatively short
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of its starting isotope neptunium-237 (2.14 million years), the fourth chain, the
neptunium Neptunium is a chemical element with the symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after the planet Uranus, led to it bein ...
series with ''A'' = 4''n'' + 1, is already extinct in nature, except for the final rate-limiting step, decay of
bismuth-209 Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass ...
. Traces of 237Np and its decay products still do occur in nature, however, as a result of neutron capture in uranium ore. The ending isotope of this chain is now known to be
thallium-205 Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the ...
. Some older sources give the final isotope as bismuth-209, but it was recently discovered that it is very slightly radioactive, with a half-life of . There are also non-transuranic decay chains of unstable isotopes of light elements, for example those of magnesium-28 and
chlorine-39 Chlorine (17Cl) has 25 isotopes with mass numbers ranging from 28Cl to 52Cl and 2 isomers (34mCl and 38mCl). There are two stable isotopes, 35Cl (75.77%) and 37Cl (24.23%), giving chlorine a standard atomic weight of 35.45. The longest-lived rad ...
. On Earth, most of the starting isotopes of these chains before 1945 were generated by
cosmic radiation Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
. Since 1945, the testing and use of nuclear weapons has also released numerous radioactive
fission products Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
. Almost all such isotopes decay by either β or β+ decay modes, changing from one element to another without changing atomic mass. These later daughter products, being closer to stability, generally have longer half-lives until they finally decay into stability.


Actinide alpha decay chains

In the four tables below, the minor branches of decay (with the branching probability of less than 0.0001%) are omitted. The energy release includes the total kinetic energy of all the emitted particles ( electrons,
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
s, gamma quanta, neutrinos,
Auger electron The Auger effect or Auger−Meitner effect is a physical phenomenon in which the filling of an inner-shell vacancy of an atom is accompanied by the emission of an electron from the same atom. When a core electron is removed, leaving a vacancy, a ...
s and
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10 nanometers, corresponding to frequencies in the range 30  ...
s) and the recoil nucleus, assuming that the original nucleus was at rest. The letter 'a' represents a year (from the Latin ''
annus A year or annus is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the h ...
''). In the tables below (except neptunium), the historic names of the naturally occurring nuclides are also given. These names were used at the time when the decay chains were first discovered and investigated. From these historical names one can locate the particular chain to which the nuclide belongs, and replace it with its modern name. The three naturally-occurring actinide alpha decay chains given below—thorium, uranium/radium (from U-238), and actinium (from U-235)—each ends with its own specific lead isotope (Pb-208, Pb-206, and Pb-207 respectively). All these isotopes are stable and are also present in nature as
primordial nuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
s, but their excess amounts in comparison with lead-204 (which has only a primordial origin) can be used in the technique of
uranium–lead dating Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with rout ...
to date rocks.


Thorium series

The 4n chain of Th-232 is commonly called the "thorium series" or "thorium cascade". Beginning with naturally occurring thorium-232, this series includes the following elements:
actinium Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name ''emanium''; the element got its name by being wrongly identified with a substance And ...
,
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs na ...
, lead,
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
, radium, radon and
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and ...
. All are present, at least transiently, in any natural thorium-containing sample, whether metal, compound, or mineral. The series terminates with lead-208. The total energy released from thorium-232 to lead-208, including the energy lost to neutrinos, is 42.6 MeV.


Neptunium series

The 4n + 1 chain of 237Np is commonly called the "neptunium series" or "neptunium cascade". In this series, only two of the isotopes involved are found naturally in significant quantities, namely the final two:
bismuth-209 Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass ...
and
thallium-205 Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the ...
. Some of the other isotopes have been detected in nature, originating from trace quantities of 237Np produced by the (n,2n) knockout reaction in primordial 238U. A
smoke detector A smoke detector is a device that senses smoke, typically as an indicator of fire. Smoke detectors are usually housed in plastic enclosures, typically shaped like a disk about in diameter and thick, but shape and size vary. Smoke can be detecte ...
containing an
americium-241 Americium-241 (, Am-241) is an isotope of americium. Like all isotopes of americium, it is radioactive, with a half-life of . is the most common isotope of americium as well as the most prevalent isotope of americium in nuclear waste. It is com ...
ionization chamber accumulates a significant amount of
neptunium Neptunium is a chemical element with the symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after the planet Uranus, led to it bein ...
-237 as its americium decays; the following elements are also present in it, at least transiently, as decay products of the neptunium:
actinium Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name ''emanium''; the element got its name by being wrongly identified with a substance And ...
, astatine, bismuth,
francium Francium is a chemical element with the Symbol (chemistry), symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain it appears in), has a hal ...
, lead,
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
,
protactinium Protactinium (formerly protoactinium) is a chemical element with the symbol Pa and atomic number 91. It is a dense, silvery-gray actinide metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds ...
, radium, thallium, thorium, and uranium. Since this series was only discovered and studied in 1947–1948, its nuclides do not have historic names. One unique trait of this decay chain is that the noble gas radon is only produced in a rare branch (not shown in the illustration) but not the main decay sequence; thus, radon from this decay chain does not migrate through rock nearly as much as from the other three. Another unique trait of this decay sequence is that it ends in thallium rather than lead. This series terminates with the stable isotope thallium-205. The total energy released from californium-249 to thallium-205, including the energy lost to neutrinos, is 66.8 MeV.


Uranium series

The 4n+2 chain of uranium-238 is called the "uranium series" or "radium series". Beginning with naturally occurring uranium-238, this series includes the following elements: astatine,
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs na ...
, lead,
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
,
protactinium Protactinium (formerly protoactinium) is a chemical element with the symbol Pa and atomic number 91. It is a dense, silvery-gray actinide metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds ...
, radium, radon,
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and ...
, and thorium. All are present, at least transiently, in any natural uranium-containing sample, whether metal, compound, or mineral. The series terminates with lead-206. The total energy released from uranium-238 to lead-206, including the energy lost to neutrinos, is 51.7 MeV.


Actinium series

The 4n+3 chain of uranium-235 is commonly called the "actinium series" or "actinium cascade". Beginning with the naturally-occurring isotope U-235, this decay series includes the following elements:
actinium Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name ''emanium''; the element got its name by being wrongly identified with a substance And ...
, astatine,
bismuth Bismuth is a chemical element with the symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs na ...
,
francium Francium is a chemical element with the Symbol (chemistry), symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain it appears in), has a hal ...
, lead,
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
,
protactinium Protactinium (formerly protoactinium) is a chemical element with the symbol Pa and atomic number 91. It is a dense, silvery-gray actinide metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds ...
, radium, radon,
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and ...
, and thorium. All are present, at least transiently, in any sample containing uranium-235, whether metal, compound, ore, or mineral. This series terminates with the stable isotope lead-207. The total energy released from uranium-235 to lead-207, including the energy lost to neutrinos, is 46.4 MeV.


See also

* Nuclear physics * Radioactive decay *
Valley of stability In nuclear physics, the valley of stability (also called the belt of stability, nuclear valley, energy valley, or beta stability valley) is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclide ...
*
Decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (de ...
* Radioisotopes (
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
) *
Radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...


Notes


References

*


External links

{{commons category, Decay chain
Nucleonica nuclear science portal

Nucleonica's Decay Engine for professional online decay calculations

EPA – Radioactive Decay



National Nuclear Data Center
– freely available databases that can be used to check or construct decay chains *
IAEA – Live Chart of Nuclides
(with decay chains)
Decay Chain Finder
Radioactivity