HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
, an ultraviolet divergence or UV divergence is a situation in which an
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
, for example a
Feynman diagram In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduc ...
, diverges because of contributions of objects with unbounded
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
, or, equivalently, because of physical phenomena at infinitesimal distances.


Overview

Since an infinite result is unphysical, ultraviolet divergences often require special treatment to remove unphysical effects inherent in the perturbative formalisms. In particular, UV divergences can often be removed by
regularization Regularization may refer to: * Regularization (linguistics) * Regularization (mathematics) * Regularization (physics) * Regularization (solid modeling) * Regularization Law, an Israeli law intended to retroactively legalize settlements See also ...
and
renormalization Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering va ...
. Successful resolution of an ultraviolet divergence is known as ultraviolet completion. If they cannot be removed, they imply that the theory is not
perturbative In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for w ...
ly well-defined at very short distances. The name comes from the earliest example of such a divergence, the "
ultraviolet catastrophe The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century/early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy ...
" first encountered in understanding
blackbody radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spe ...
. According to
classical physics Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the ...
at the end of the nineteenth century, the quantity of
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
in the form of
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
released at any specific
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
should increase with decreasing wavelength—in particular, there should be considerably more
ultraviolet light Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiatio ...
released from a blackbody radiator than
infrared light Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from arou ...
. Measurements showed the opposite, with maximal energy released at intermediate wavelengths, suggesting a failure of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
. This problem eventually led to the development of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
. The successful resolution of the original ultraviolet catastrophe has prompted the pursuit of solutions to other problems of ultraviolet divergence. A similar problem in
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
was solved by
Richard Feynman Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfl ...
by applying
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
through the use of
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in t ...
s, leading to the successful creation of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
(QED). Similar techniques led to the
standard model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. Ultraviolet divergences remain a key feature in the exploration of new physical theories, like
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories ...
.


Proliferation in perturbative theory

Commenting on the fact that contemporary theories about quantum scattering of fundamental particles grew out of application of the quantization procedure to classical fields that satisfy wave equations, J.D. Bjorken and
Sidney Drell Sidney David Drell (September 13, 1926 – December 21, 2016) was an American theoretical physicist and arms control expert. At the time of his death, he was professor emeritus at the Stanford Linear Accelerator Center (SLAC) and senior fe ...
J.D. Bjorken, S. Drell (1965). Relativistic Quantum Fields, Preface. McGraw-Hill. . pointed out the following facts about such a procedure which are still as relevant today as in 1965:
The first is that we are led to a theory with differential wave propagation. The field functions are continuous functions of continuous parameters and , and the changes in the fields at a point are determined by properties of the fields infinitesimally close to the point . For most wave fields (for example, sound waves and the vibrations of strings and membranes) such a description is an idealization which is valid for distances larger than the characteristic length which measures the granularity of the medium. For smaller distances these theories are modified in a profound way. The electromagnetic field is a notable exception. Indeed, until the special theory of relativity obviated the necessity of a mechanistic interpretation, physicists made great efforts to discover evidence for such a mechanical description of the radiation field. After the requirement of an “ether” which propagates light waves had been abandoned, there was considerably less difficulty in accepting this same idea when the observed wave properties of the electron suggested the introduction of a new field. Indeed there is no evidence of an ether which underlies the electron wave. However, it is a gross and profound extrapolation of present experimental knowledge to assume that a wave description successful at “large” distances (that is, atomic lengths ≈''10 −8'' cm) may be extended to distances an indefinite number of orders of magnitude smaller (for example, to less than nuclear lengths ≈''10 −13'' cm). In the relativistic theory, we have seen that the assumption that the field description is correct in arbitrarily small space-time intervals has led—in perturbation theory—to divergent expressions for the electron self-energy and the bare charge. Renormalization theory has sidestepped these divergence difficulties, which may be indicative of the failure of the perturbation expansion. However, it is widely felt that the divergences are symptomatic of a chronic disorder in the small-distance behaviour of the theory. We might then ask why local field theories, that is, theories of fields which can be described by differential laws of wave propagation, have been so extensively used and accepted. There are several reasons, including the important one that with their aid a significant region of agreement with observations has been found. But the foremost reason is brutally simple: there exists no convincing form of a theory which avoids differential field equations.


See also

*
Infrared divergence In physics, an infrared divergence (also IR divergence or infrared catastrophe) is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with very small energy approaching zero, or equivalent ...
*
Cutoff (physics) In theoretical physics, cutoff (AE: cutoff, BE: cut-off) is an arbitrary maximal or minimal value of energy, momentum, or length, used in order that objects with larger or smaller values than these physical quantities are ignored in some calculat ...
*
Renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in t ...
*
UV fixed point In a quantum field theory, one may calculate an effective or running coupling constant that defines the coupling of the theory measured at a given momentum scale. One example of such a coupling constant is the electric charge. In approximate cal ...
*
Causal perturbation theory Causal perturbation theory is a mathematically rigorous approach to renormalization theory, which makes it possible to put the theoretical setup of perturbative quantum field theory on a sound mathematical basis. It goes back to a seminal wor ...
*
Zeta function regularization Zeta (, ; uppercase Ζ, lowercase ζ; grc, ζῆτα, el, ζήτα, label= Demotic Greek, classical or ''zē̂ta''; ''zíta'') is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7. It was derived ...


References

Quantum field theory Renormalization group {{quantum-stub