HOME

TheInfoList



OR:

Ultra low velocity zones (ULVZs) are patches on the core-mantle boundary that have extremely low seismic velocities. The zones are mapped to be hundreds of kilometers in diameter and tens of kilometers thick. Their
shear wave __NOTOC__ In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because th ...
velocities can be up to 30% lower than surrounding material. The composition and origin of the zones remain uncertain. The zones appear to correlate with edges of the African and Pacific
Large low-shear-velocity provinces Large low-shear-velocity provinces, LLSVPs, also called LLVPs or superplumes, are characteristic structures of parts of the lowermost mantle (the region surrounding the outer core) of Earth. These provinces are characterized by slow shear wave ve ...
(LLSVPs) as well as the location of
hotspots Hotspot, Hot Spot or Hot spot may refer to: Places * Hot Spot, Kentucky, a community in the United States Arts, entertainment, and media Fictional entities * Hot Spot (comics), a name for the DC Comics character Isaiah Crockett * Hot Spot (Tra ...
.


Discovery and constraints

ULVZs are discovered by the delay and scattering of
body waves Body may refer to: In science * Physical body, an object in physics that represents a large amount, has mass or takes up space * Body (biology), the physical material of an organism * Body plan, the physical features shared by a group of animal ...
that reflect and diffract on or are refracted by the core-mantle boundary. Different body waves types give different constraints on the dimensions or velocity contrasts of the ULVZ. Even though ULVZs are discovered in places, it remains difficult to map out their extent and constrain their density and velocity. Usually trade-offs between various parameters exist. In general though, ULVZs appear to be a hundred to a thousand kilometers across and tens of kilometers thick (although existing thinner or smaller ULVZs might fall below the resolution of seismology). Their shear wave velocity reduction is on the order of −10 to −30% and the compressional wave velocity reduction tends to be weaker.


Composition and origin

ULVZs are hypothesized to be enriched in
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, be partially molten or a combination of both, or result of the presence of carbon. Different scenarios have been proposed for the iron enrichment: iron could be leaking from the core, have accumulated over past
subduction Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, ...
, or be remnants of a basal magma ocean. Both
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is a ...
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as (XIIA2+VIB4+X2−3), known a ...
and
periclase Periclase is a magnesium mineral that occurs naturally in contact metamorphic rocks and is a major component of most basic refractory bricks. It is a cubic form of magnesium oxide ( Mg O). In nature it usually forms a solid solution with wüstit ...
(which are thought to be present in the lowermost mantle) show reduced velocities with increasing iron at these pressures and temperatures. Experiments with iron and water under the conditions present form an iron peroxide FeO2H''x'' that will contribute to ULVZ.


Distribution and dynamics

ULVZs have higher density than their surroundings to remain stable on the core-mantle boundary. In a general mantle convection setting, the density contrast as well as the amount of material available would control the morphology/shape of the ULVZ. So far a range of sizes for ULVZs has been found. The location and shape of the ULVZs can also be controlled by the presence of thermo-chemical piles (or LLSVPs). The denser ULVZ material heaps up at the edges of these piles.


Hawaiian ULVZ

The Hawaiian ULVZ appears to be the largest ULVZ mapped to date. It sits on the core-mantle boundary slightly to the west of the
Hawaiian hotspot The Hawaii hotspot is a volcanic hotspot located near the namesake Hawaiian Islands, in the northern Pacific Ocean. One of the best known and intensively studied hotspots in the world, the Hawaii plume is responsible for the creation of the ...
at the northern boundary of the Pacific large low-shear-velocity province. It is mapped out to be roughly 1000 km across and 20 km high. Its large aspect ratio dynamically suggests it is very dense. Its shear wave velocity reduction is roughly 20% compared to surrounding material. It remains speculative if there is a correlation between this large ULVZ and the presence of the strongest hotspot flux at the surface; potentially the ULVZ could be an anchor to a whole-mantle plume.


Samoan ULVZ

The Samoan is another mega-ultra-low velocity zone which lies directly beneath the Samoa hotspot. This zone is roughly 800 by 250 km (roughly the size of Florida) and is 10–15 km high. Its material appears 45% slower in shear wave velocity, 15% slower in compressional wave velocity and 10% denser. Additionally, the ULVZ appears to lie in a gap of the Pacific LLSVP (not represented in the illustration here), leading to the hypothesis that this slow material is pushed to the center by surrounding large piles.


References

{{Reflist Geophysics