Upper Topology
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the upper topology on a
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
''X'' is the
coarsest topology In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies. Definition A topology on a set may be defined as t ...
in which the closure of a
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
\ is the order section a] = \ for each a\in X. If \leq is a partial order, the upper topology is the least Specialization_(pre)order#Important_properties, order consistent topology in which all
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
s are
up-set In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger ...
s. However, not all up-sets must necessarily be open sets. The lower topology induced by the preorder is defined similarly in terms of the
down-set In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger ...
s. The preorder inducing the upper topology is its
specialization preorder In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the ...
, but the specialization preorder of the lower topology is opposite to the inducing preorder. The real upper topology is most naturally defined on the
upper-extended real line In mathematics, the extended real number system is obtained from the real number system \R by adding two elements denoted +\infty and -\infty that are respectively greater and lower than every real number. This allows for treating the potential ...
(-\infty, +\infty] = \R \cup \ by the system \ of open sets. Similarly, the real lower topology \ is naturally defined on the lower real line \infty, +\infty) = \R \cup \. A real function on a topological space is upper semi-continuous if and only if it is lower-continuous, i.e. is
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
with respect to the lower topology on the lower-extended line . Similarly, a function into the upper real line is
lower semi-continuous In mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function f is upper (respectively, lower) semicontinuous at a point x_0 if, r ...
if and only if it is upper-continuous, i.e. is
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
with respect to the upper topology on .


See also

*


References

* *
101
* General topology Order theory {{topology-stub