In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an uncountable set, informally, is an
infinite set
In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable.
Properties
The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
that contains too many
elements to be
countable
In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
. The uncountability of a set is closely related to its
cardinal number
In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
: a set is uncountable if its cardinal number is larger than
aleph-null
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used ...
, the cardinality of the
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s.
Examples of uncountable sets include the set of all
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s and set of all subsets of the natural numbers.
Characterizations
There are many equivalent characterizations of uncountability. A set ''X'' is uncountable if and only if any of the following conditions hold:
* There is no
injective function
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
(hence no
bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
) from ''X'' to the set of natural numbers.
* ''X'' is nonempty and for every ω-
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
of elements of ''X'', there exists at least one element of X not included in it. That is, ''X'' is nonempty and there is no
surjective function
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a ...
from the natural numbers to ''X''.
* The
cardinality
The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
of ''X'' is neither finite nor equal to
(
aleph-null
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used ...
).
* The set ''X'' has cardinality strictly greater than
.
The first three of these characterizations can be proven equivalent in
Zermelo–Fraenkel set theory
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
without the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
, but the equivalence of the third and fourth cannot be proved without additional choice principles.
Properties
If an uncountable set ''X'' is a subset of set ''Y'', then ''Y'' is uncountable.
Examples
The best known example of an uncountable set is the set of all
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s;
Cantor's diagonal argument
Cantor's diagonal argument (among various similar namesthe diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof) is a mathematical proof that there are infin ...
shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
s of
natural number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s (see: ), and the
set of all subsets of the set of natural numbers. The cardinality of is often called the
cardinality of the continuum
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \ ...
, and denoted by
, or
, or
(
beth-one).
The
Cantor set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.
Throu ...
is an uncountable
subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of . The Cantor set is a
fractal
In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scale ...
and has
Hausdorff dimension
In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line ...
greater than zero but less than one ( has dimension one). This is an example of the following fact: any subset of of Hausdorff dimension strictly greater than zero must be uncountable.
Another example of an uncountable set is the set of all
functions from to . This set is even "more uncountable" than in the sense that the cardinality of this set is
(
beth two
In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0, \beth_1, \beth_2, \beth_3, \dots, where \beth is the Hebrew lett ...
), which is larger than
.
A more abstract example of an uncountable set is the set of all countable
ordinal number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets.
A finite set can be enumerated by successively labeling each element with the leas ...
s, denoted by Ω or ω
1.
The cardinality of Ω is denoted
(
aleph-one
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used t ...
). It can be shown, using the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
, that
is the ''smallest'' uncountable cardinal number. Thus either
, the cardinality of the reals, is equal to
or it is strictly larger.
Georg Cantor
Georg Ferdinand Ludwig Philipp Cantor ( ; ; – 6 January 1918) was a mathematician who played a pivotal role in the creation of set theory, which has become a foundations of mathematics, fundamental theory in mathematics. Cantor establi ...
was the first to propose the question of whether
is equal to
. In 1900,
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time.
Hilbert discovered and developed a broad range of fundamental idea ...
posed this question as the first of his
23 problems. The statement that
is now called the
continuum hypothesis
In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states:
Or equivalently:
In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
, and is known to be independent of the
Zermelo–Fraenkel axioms for
set theory
Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
(including the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
).
Without the axiom of choice
Without the
axiom of choice
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
, there might exist cardinalities
incomparable to
(namely, the cardinalities of
Dedekind-finite infinite sets). Sets of these cardinalities satisfy the first three characterizations above, but not the fourth characterization. Since these sets are not larger than the natural numbers in the sense of cardinality, some may not want to call them uncountable.
If the axiom of choice holds, the following conditions on a cardinal
are equivalent:
*
*
and
*
, where
and
is the least
initial ordinal greater than
However, these may all be different if the axiom of choice fails. So it is not obvious which one is the appropriate generalization of "uncountability" when the axiom fails. It may be best to avoid using the word in this case and specify which of these one means.
See also
*
Aleph number
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used t ...
*
Beth number
In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers (also known as transfinite numbers), conventionally written \beth_0, \beth_1, \beth_2, \beth_3, \dots, where \beth is the Hebrew lett ...
*
First uncountable ordinal
In mathematics, the first uncountable ordinal, traditionally denoted by \omega_1 or sometimes by \Omega, is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum (least upper bound) of all countable ordinals. Whe ...
*
Injective function
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
References
Bibliography
*
Halmos, Paul, ''
Naive Set Theory
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics.
Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It de ...
''. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. (Paperback edition).
*
External links
Proof that R is uncountable
{{Set theory
Basic concepts in infinite set theory
Infinity
Cardinal numbers