HOME

TheInfoList



OR:

Ultrasonic nozzles are a type of
spray nozzle A spray nozzle or atomizer is a device that facilitates the dispersion of a liquid by the formation of a Spray (liquid drop), spray. The production of a spray requires the fragmentation of liquid structures, such as liquid sheets or ligaments ...
that use high frequency vibrations produced by
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
transducer A transducer is a device that Energy transformation, converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, M ...
s acting upon the nozzle tip that create capillary waves in a liquid film. Once the
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
of the capillary waves reaches a critical height (due to the power level supplied by the generator), they become too tall to support themselves and tiny droplets fall off the tip of each wave resulting in
atomization Atomization refers to breaking bonds in some substance to obtain its constituent atoms in gas phase. By extension, it also means separating something into fine particles, for example: process of breaking bulk liquids into small droplets. Atomizati ...
. The primary factors influencing the initial droplet size produced are
frequency Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
of vibration,
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension (physics), tension is what allows objects with a higher density than water such as razor blades and insects (e.g. Ge ...
, and
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
of the liquid. Frequencies are commonly in the range of 20–180 kHz, beyond the range of human hearing, where the highest frequencies produce the smallest drop size.


History

In 1962 Dr. Robert Lang followed up on this work, essentially proving a correlation between his atomized droplet size relative to Rayleigh's liquid wavelength. Ultrasonic nozzles were first commercialized by Dr. Harvey L. Berger. .


Applications

Subsequent uses of the technology include coating blood collection tubes, spraying flux onto printed circuit boards, coating implantable drug eluting
stent In medicine, a stent is a tube usually constructed of a metallic alloy or a polymer. It is inserted into the Lumen (anatomy), lumen (hollow space) of an anatomic vessel or duct to keep the passageway open. Stenting refers to the placement of ...
s and balloon/catheters,
float glass Float glass is a sheet of glass made by floating molten glass on a bed of molten metal of a low melting point, typically tin, although lead was used for the process in the past. This method gives the sheet uniform thickness and a very flat surfa ...
manufacturing coatings, anti-microbial coatings onto food, precision semiconductor coatings and alternative energy coatings for solar cell and fuel cell manufacturing, among others.


Drug eluting stents and drug-coated balloons

Pharmaceuticals Medication (also called medicament, medicine, pharmaceutical drug, medicinal product, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy ( pharmacotherapy) is an important part of the ...
such as Sirolimus (also called rapamycin) and
paclitaxel Paclitaxel, sold under the brand name Taxol among others, is a chemotherapy medication used to treat ovarian cancer, esophageal cancer, breast cancer, lung cancer, Kaposi's sarcoma, cervical cancer, and pancreatic cancer. It is administered b ...
are coated on the surface of drug eluting stents (DES) and drug-coated balloons (DCB). These devices benefit greatly from ultrasonic spray nozzles for their ability to apply coatings with little to no loss. Medical devices such as DES and DCB require very narrow spray patterns, a low-velocity atomized spray and low-pressure air because of their small size.


Fuel cells

Research has shown that ultrasonic nozzles can be effectively used to manufacture
proton exchange membrane fuel cell Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable ...
s. The inks typically used are a
platinum Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
-
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
suspension, where the platinum acts as a catalyst inside the cell. Traditional methods to apply the catalyst to the proton exchange membrane typically involve
screen printing Screen printing is a printing technique where a mesh is used to transfer ink (or dye) onto a substrate, except in areas made impermeable to the ink by a blocking stencil. A blade or squeegee is moved across the screen in a "flood stroke ...
or doctor-blades. However, these methods can result in undesirable cell performance due to the tendency of the catalyst to form agglomerations resulting in non-uniform gas flow in the cell and prohibiting the catalyst from being fully exposed, running the risk that the solvent or carrier liquid may be absorbed into the membrane, both of which impeded proton exchange efficiency. When ultrasonic nozzles are used, the spray can be made to be as dry as necessary by the nature of the small and uniform droplet size, by varying the distance the droplets travel and by applying low heat to the substrate such that the droplets dry in the air before reaching the substrate. Process engineers have finer control over these types of variables as opposed to other technologies. Additionally, because the ultrasonic nozzle imparts energy to the suspension just prior to and during atomization, possible agglomerates in the suspension are broken up resulting in homogenous distribution of the catalyst, resulting in higher efficiency of the catalyst and in turn, the fuel cell.


Transparent conductive films

Ultrasonic spray nozzle technology has been used to create films of
indium tin oxide Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can be described as either a ceramic or an alloy. Indium tin oxide is typically encountered as an oxygen-saturate ...
(ITO) in the formation of transparent conductive films (TCF). ITO has excellent transparency and low sheet resistance, however it is a scarce material and prone to cracking, which does not make it a good candidate for the new flexible TCFs. Graphene on the other hand can be made into a flexible film, extremely conductive and has high transparency. Ag nanowires (AgNWs) when combined with Graphene have been reported to be a promising superior TCF alternative to ITO. Prior studies focus on spin and bar coating methods which are not suitable for large area TCFs. A multi-step process utilizing ultrasonic spray of graphene oxide and conventional spray of AgNWs followed by a
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydraz ...
vapor reduction, followed by the application of polymethylmethacrylate (PMMA) topcoat resulted in a peelable TCF that can be scaled to a large size.


Carbon nanotubes

CNT thin films are used as alternative materials to create transparent conducting films (TCO layers) for touch panel displays or other glass substrates, as well as organic solar cell active layers.


Photoresist spray onto MEMs wafers

Microelectromechanical systems MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices ...
(MEMs) are small microfabricated devices that combine electrical and mechanical components. Devices vary in size from below one
micron The micrometre (English in the Commonwealth of Nations, Commonwealth English as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American English), also commonly known by the non-SI term micron, is a uni ...
to millimeters in size, functioning individually or in arrays to sense, control, and activate mechanical processes on the micro scale. Examples include pressure sensors, accelerometers, and microengines. Fabrication of MEMs involves depositing a uniform layer of
photoresist A photoresist (also known simply as a resist) is a light-sensitive material used in several processes, such as photolithography and photoengraving, to form a patterned coating on a surface. This process is crucial in the electronics industry. T ...
onto the Si wafer. Photoresist has traditionally been applied to wafers in IC manufacturing using a spin coating technique. In complex MEMs devices that have etched areas with high aspect ratios, it can be difficult to achieve uniform coverage along the top, side walls, and bottoms of deep grooves and trenches using spin coating techniques due to the high rate of spin needed to remove excess liquid. Ultrasonic spray techniques are used to spray uniform coatings of photoresist onto high aspect ratio MEMs devices and can minimize usage and overspray of photoresist.


Printed circuit boards

The non-clogging nature of ultrasonic nozzles, the small and uniform droplet size created by them, and the fact that the spray plume can be shaped by tightly controlled air shaping devices makes the application quite successful in
wave soldering Wave soldering is a bulk soldering process used in printed circuit board manufacturing. The circuit board is passed over a pan of molten solder in which a pump produces an upwelling of solder that looks like a standing wave. As the circuit bo ...
processes. The viscosity of nearly all fluxes on the market fit well within the capabilities of the technology. In
soldering Soldering (; ) is a process of joining two metal surfaces together using a filler metal called solder. The soldering process involves heating the surfaces to be joined and melting the solder, which is then allowed to cool and solidify, creatin ...
, "no-clean" flux is highly preferred. But if excessive quantities are applied the process will result in corrosive residues on the bottom of the circuit assembly.


Solar cells

Photovoltaic Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
and dye-sensitized solar technology both need the application of liquids and coatings during the manufacturing process. With most of these substances being very expensive, any losses due to over-spray or quality control are minimized with the use of ultrasonic nozzles. In efforts to reduce the manufacturing costs of
solar cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
, traditionally done using the batch-based
phosphoryl chloride Phosphoryl chloride (commonly called phosphorus oxychloride) is a colourless liquid with the formula . It hydrolyses in moist air releasing phosphoric acid and fumes of hydrogen chloride. It is manufactured industrially on a large scale from phosp ...
or POCl3 method, it has been shown that using ultrasonic nozzles to lay a thin aqueous-based film onto silicon wafers can effectively be used as a diffusion process to create N-type layers with uniform surface resistance.


Ultrasonic spray pyrolysis

Ultrasonic spray pyrolysis is a chemical vapor deposition (CVD) method utilized in the formation of a variety of materials in
thin film A thin film is a layer of materials ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
or
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
form. Precursor materials are often fabricated through sol-gel methods and examples include the formation of aqueous silver nitrate, synthesis of zirconia particles, and fabrication of
solid oxide fuel cell A solid oxide fuel cell (or SOFC) is an Electrochemistry, electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or cera ...
SOFC cathodes. An atomized spray produced from an ultrasonic nozzle is subjected to a heated substrate typically ranging from 300–400 degrees C. Due to the high temperatures of the spray chamber, extensions to the ultrasonic nozzle (as pictured and labeled – High Temperature Ultrasonic Nozzle) such as a removable tip (tip is hidden under the vortex air shroud labeled #2) have been designed to be subjected to high temperatures while protecting the body (labeled #1) of the ultrasonic nozzle that contains temperature sensitive
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
elements, typically outside of the spray chamber or by other means of isolation.


References

Berger, Harvey L. Ultrasonic Liquid Atomization: Theory and Application. 2nd ed. Hyde Park: Partrige Hill, 2006. 1–177. Lefebvre, Arthur, Atomization and Sprays, Hemisphere, 1989, {{ISBN, 0-89116-603-3


External links


Further explanation of how an ultrasonic nozzle works
Fluid mechanics Tools Articles containing video clips