HOME

TheInfoList



OR:

A transmission gate (TG) is an analog gate similar to a
relay A relay Electromechanical relay schematic showing a control coil, four pairs of normally open and one pair of normally closed contacts An automotive-style miniature relay with the dust cover taken off A relay is an electrically operated switch ...
that can conduct in both directions or block by a control signal with almost any voltage potential. It is a
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSF ...
-based switch, in which PMOS passes a strong 1 but poor 0, and NMOS passes strong 0 but poor 1. Both PMOS and NMOS work simultaneously.


Structure

In principle, a transmission gate is made up of two
field-effect transistors The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of Electric current, current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''dra ...
(FET), in which – in contrast to traditional discrete field-effect transistors – the substrate terminal (bulk) is not connected internally to the source terminal. The two transistors, an n-channel MOSFET and a p-channel MOSFET, are connected in parallel with the drain and source terminals of the two transistors connected together. Their gate terminals are connected to each other by a NOT gate (
inverter A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opp ...
), to form the control terminal. Unlike with discrete FETs, the substrate terminal is not connected to the source connection. Instead, the substrate terminals are connected to the respective supply potential in order to ensure that the parasitic substrate diode (between source/drain and substrate) is always reversely biased and so does not affect signal flow. The substrate terminal of the p-channel MOSFET is thus connected to the positive supply potential, and the substrate terminal of the n-channel MOSFET connected to the negative supply potential.


Function

When the control input is a logic zero (negative power supply potential), the gate of the n-channel MOSFET is also at a negative supply voltage potential. The gate terminal of the p-channel MOSFET is caused by the inverter, to the positive supply voltage potential. Regardless of on which switching terminal of the transmission gate (A or B) a voltage is applied (within the permissible range), the gate-source voltage of the n-channel MOSFETs is always negative, and the p-channel MOSFETs is always positive. Accordingly, neither of the two transistors will conduct and the transmission gate turns off. When the control input is a logic one, the gate terminal of the n-channel MOSFETs is located at a positive supply voltage potential. By the inverter, the gate terminal of the p-channel MOSFETs is now at a negative supply voltage potential. As the substrate terminal of the transistors is not connected to the source terminal, the drain and source terminals are almost equal and the transistors start conducting at a voltage difference between the gate terminal and one of these conducts. One of the switching terminals of the transmission gate is raised to a voltage near the negative supply voltage, a positive gate-source voltage (gate-to-drain voltage) will occur at the N-channel MOSFET, and the transistor begins to conduct, and the transmission gate conducts. The voltage at one of the switching terminals of the transmission gate is now raised continuously up to the positive supply voltage potential, so the gate-source voltage is reduced (gate-drain voltage) on the n-channel MOSFET, and this begins to turn off. At the same time, the p-channel MOSFET has a negative gate-source voltage (gate-to-drain voltage) builds up, whereby this transistor starts to conduct and the transmission gate switches. Thereby it is achieved that the transmission gate passes over the entire voltage range. The transition resistance of the transmission gate varies depending upon the voltage to be switched, and corresponds to a superposition of the resistance curves of the two transistors.


Applications


Electronic switch

Transmission gates are used in order to implement electronic switches and analog multiplexers. If a signal is connected to different outputs ( changeover switches, multiplexers), multiple transmission gates can be used as a transmission gate to either conduct or block (simple switch). A typical example is known as the 4066 4-way analog switch which is available from various manufacturers.


Analog multiplexer

Many
mixed-signal A mixed-signal integrated circuit is any integrated circuit that has both analog circuits and digital circuits on a single semiconductor die.analog-to-digital converter In electronics, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide ...
. Robert A. Pease
"Troubleshooting Analog Circuits"
2013. p. 132.


Logic circuits

Logic circuits can be constructed with the aid of transmission gates instead of traditional CMOS pull-up and pull-down networks. Such circuits can often be made more compact, which can be an important consideration in silicon implementations.


Negative voltages

By using a transmission gate to switch alternating voltages (e.g.: audio signal), the negative power supply potential must be lower than the lowest signal potential. This ensures that the substrate diode will remain non-conducting even at negative voltages. Although the transmission gate can still switch to logic voltage levels, there are special versions with integrated level shifters. A good example, is the 4053 standard chip, commonly used to select between analogue inputs to an audio amplifier, has a separate ground (pin 8) and negative substrate connection (pin 7) that also supplies the level shifter.


See also

*
Tri-state logic In digital electronics, a tri-state or three-state buffer is a type of digital buffer that has three stable states: a high output state, a low output state, and a high-impedance state. In the high-impedance state, the output of the buffer is discon ...
*
Analogue switch The analogue (or PETR) switch, also called the bilateral switch, is an electronic component that behaves in a similar way to a relay, but has no moving parts. The switching element is normally a pair of MOSFET transistors, one an N-channel device ...


References

* Ulrich Tietze, Christoph Schenk: Halbleiter-Schaltungstechnik. 12. Auflage, Springer, Berlin/Heidelberg/New York 2002, . * Erwin Böhmer: Elemente der angewandten Elektronik. 15. Auflage, Vieweg & Sohn Verlag , GWV Fachverlage GmbH, Wiesbaden 2007, . * Klaus Fricke: Digitaltechnik. 6. Auflage, Vieweg & Sohn Verlag , GWV Fachverlage GmbH, Wiesbaden 2009, {{ISBN, 978-3-8348-0459-4. Logic gates