HOME

TheInfoList



OR:

A time standard is a specification for measuring
time Time is the continued sequence of existence and event (philosophy), events that occurs in an apparently irreversible process, irreversible succession from the past, through the present, into the future. It is a component quantity of various me ...
: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as
standards Standard may refer to: Symbols * Colours, standards and guidons, kinds of military signs * Standard (emblem), a type of a large symbol or emblem used for identification Norms, conventions or requirements * Standard (metrology), an object t ...
, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day. Standardized time measurements are made using a
clock A clock or a timepiece is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units such as the day, the lunar month and ...
to count periods of some period changes, which may be either the changes of a natural phenomenon or of an artificial machine. Historically, time standards were often based on the Earth's rotational period. From the late 18 century to the 19th century it was assumed that the Earth's daily rotational rate was constant. Astronomical observations of several kinds, including eclipse records, studied in the 19th century, raised suspicions that the rate at which
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
rotates is gradually slowing and also shows small-scale irregularities, and this was confirmed in the early twentieth century. Time standards based on Earth rotation were replaced (or initially supplemented) for astronomical use from 1952 onwards by an '' ephemeris time'' standard based on the Earth's orbital period and in practice on the motion of the Moon. The invention in 1955 of the caesium
atomic clock An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwe ...
has led to the replacement of older and purely astronomical time standards, for most practical purposes, by newer time standards based wholly or partly on atomic time. Various types of second and day are used as the basic time interval for most time scales. Other intervals of time (minutes, hours, and years) are usually defined in terms of these two.


Terminology

The term "time" is generally used for many close but different concepts, including: *
instant In physics and the philosophy of science, instant refers to an infinitesimal interval in time, whose passage is instantaneous. In ordinary speech, an instant has been defined as "a point or very short space of time," a notion deriving from its ...
as an object – one point on the time axes. Being an object, it has no value; ** date as a quantity characterising an instant. As a quantity, it has a value which may be expressed in a variety of ways, for example "2014-04-26T09:42:36,75" in
ISO standard The International Organization for Standardization (ISO ) is an international standard development organization composed of representatives from the national standards organizations of member countries. Membership requirements are given in A ...
format, or more colloquially such as "today, 9:42 a.m."; * time interval as an object – part of the time axes limited by two instants. Being an object, it has no value; ** duration as a quantity characterizing a time interval. As a quantity, it has a value, such as a number of minutes, or may be described in terms of the quantities (such as times and dates) of its beginning and end. *
chronology Chronology (from Latin ''chronologia'', from Ancient Greek , ''chrónos'', "time"; and , ''-logia'') is the science of arranging events in their order of occurrence in time. Consider, for example, the use of a timeline or sequence of even ...
, an ordered sequence of events in the past. Chronologies can be put into chronological groups ( periodization). One of the most important systems of periodization is the
geologic time scale The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochr ...
, which is a system of periodizing the events that shaped the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
and its life. Chronology, periodization, and interpretation of the past are together known as the study of
history History (derived ) is the systematic study and the documentation of the human activity. The time period of event before the invention of writing systems is considered prehistory. "History" is an umbrella term comprising past events as well ...
.


Definitions of the second

There have only ever been three definitions of the second: as a fraction of the day, as a fraction of an extrapolated year, and as the microwave frequency of a caesium atomic clock. In early history, clocks were not accurate enough to track seconds. After the invention of mechanical clocks, the CGS system and
MKS system of units The MKS system of units is a physical system of measurement that uses the metre, kilogram, and second (MKS) as base units. It forms the base of the International System of Units (SI), though SI has since been redefined by different fundament ...
both defined the second as of a mean solar day. MKS was adopted internationally during the 1940s. In the late 1940s, quartz crystal oscillator clocks could measure time more accurately than the rotation of the Earth. Metrologists also knew that Earth's orbit around the Sun (a year) was much more stable than Earth's rotation. This led to the definition of ephemeris time and the
tropical year A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same position in the sky of a celestial body of the Solar System such as the Earth, completing a full cycle of seasons; for example, the time ...
, and the ephemeris second was defined as "the fraction of the tropical year for 1900 January 0 at 12 hours ephemeris time".This definition was adopted as part of the
International System of Units The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. ...
in 1960. Most recently, atomic clocks have been developed that offer improved accuracy. Since 1967, the SI base unit for time is the SI second, defined as exactly "the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom" (at a temperature of 0 K and at mean
sea level Mean sea level (MSL, often shortened to sea level) is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datuma standardis ...
). The SI second is the basis of all atomic timescales, e.g. coordinated universal time, GPS time, International Atomic Time, etc.


Current time standards

Geocentric Coordinate Time Geocentric Coordinate Time (TCG - Temps-coordonnée géocentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satelli ...
(TCG) is a
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
having its spatial origin at the center of Earth's mass. TCG is a theoretical ideal, and any particular realization will have measurement error. International Atomic Time (TAI) is the primary physically realized time standard. TAI is produced by the BIPM (International Bureau of Weights and Measures), and is based on the combined input of many
atomic clock An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwe ...

around the world
each corrected for environmental and relativistic effects (both gravitational and because of speed, like in GNSS). TAI is not related to TCG directly but rather is a realization of Terrestrial Time (TT), a theoretical timescale that is a rescaling of TCG such that the time rate approximately matches proper time at
mean sea level There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ...
.
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
(UT1) is the Earth Rotation Angle (ERA) linearly scaled to match historical definitions of
mean solar time Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Two types of solar time are apparent solar time ( sundia ...
at 0° longitude. At high precision, Earth's rotation is irregular and is determined from the positions of distant quasars using long baseline interferometry, laser ranging of the Moon and artificial satellites, as well as GPS satellite orbits.
Coordinated Universal Time Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of Solar time#Mean solar time, mean solar time (such as Universal Time, UT1) at 0° longitude (at the I ...
(UTC) is an atomic time scale designed to approximate
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
. UTC differs from TAI by an integral number of seconds. UTC is kept within 0.9 second of UT1 by the introduction of one-second steps to UTC, the "
leap second A leap second is a one- second adjustment that is occasionally applied to Coordinated Universal Time (UTC), to accommodate the difference between precise time ( International Atomic Time (TAI), as measured by atomic clocks) and imprecise obser ...
". To date these steps (and difference "TAI-UTC") have always been positive. The
Global Positioning System The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite ...
broadcasts a very precise time signal worldwide, along with instructions for converting GPS time to UTC. This GPS time signal is a physically realized time standard based on, and regularly synchronized with or from, UTC time.
Standard time Standard time is the synchronisation of clocks within a geographical region to a single time standard, rather than a local mean time standard. Generally, standard time agrees with the local mean time at some meridian that passes through the ...
or civil time in a time zone deviates a fixed, round amount, usually a whole number of hours, from some form of
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
, usually UTC. The offset is chosen such that a new day starts approximately while the Sun is crossing the nadir meridian. Alternatively the difference is not really fixed, but it changes twice a year a round amount, usually one hour, see
Daylight saving time Daylight saving time (DST), also referred to as daylight savings time or simply daylight time (United States, Canada, and Australia), and summer time (United Kingdom, European Union, and others), is the practice of advancing clocks (typicall ...
.
Julian day number The Julian day is the continuous count of days since the beginning of the Julian period, and is used primarily by astronomers, and in software for easily calculating elapsed days between two events (e.g. food production date and sell by date). ...
is a count of days elapsed since Greenwich mean noon on 1 January 4713 B.C., Julian proleptic calendar. The Julian Date is the Julian day number followed by the fraction of the day elapsed since the preceding noon. Conveniently for astronomers, this avoids the date skip during an observation night. Modified Julian day (MJD) is defined as MJD = JD - 2400000.5. An MJD day thus begins at midnight, civil date. Julian dates can be expressed in UT1, TAI, TT, etc. and so for precise applications the timescale should be specified, e.g. MJD 49135.3824 TAI.
Barycentric Coordinate Time Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and ...
(TCB) is a
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
having its spatial origin at the center of mass of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
, which is called the barycenter.


Conversions

Conversions between atomic time systems (TAI, GPS, and UTC) are for the most part exact. However, GPS time is a measured value as opposed to a computed "paper" scale. As such it may differ from UTC(USNO) by a few hundred nanoseconds, which in turn may differ from official UTC by as much as 26 nanoseconds. Conversions for UT1 and TT rely on published difference tables which are specified to 10 microseconds and 0.1 nanoseconds respectively. Definitions: # LS = TAI – UTC = Leap Seconds fro
USNO Table of Leap Seconds
# DUT1 = UT1 – UTC published i
IERS Bulletins
o
U.S. Naval Observatory EO
# DTT = TT - TAI - 32.184 s published in BIPM'
TT(BIPM) tables
TCG is linearly related to TT as: TCG - TT = LG * (JD -2443144.5) * 86400 seconds, with the scale difference LG defined as 6.969290134e-10 exactly. TCB is a linear transformation of TDB and TDB differs from TT in small, mostly periodic terms. Neglecting these terms (on the order of 2 milliseconds for several millennia around the present epoch), TCB is related to TT by: TCB - TT = LB * (JD -2443144.5) * 86400 seconds. The scale difference LB has been defined by the IAU to be 1.550519768e-08 exactly.


Time standards based on Earth rotation

Apparent solar time or true solar time is based on the solar day, which is the period between one solar noon (passage of the real Sun across the meridian) and the next. A solar day is approximately 24 hours of mean time. Because the Earth's orbit around the Sun is elliptical, and because of the obliquity of the Earth's axis relative to the plane of the orbit (the ecliptic), the apparent solar day varies a few dozen seconds above or below the mean value of 24 hours. As the variation accumulates over a few weeks, there are differences as large as 16 minutes between apparent solar time and mean solar time (see Equation of time). However, these variations cancel out over a year. There are also other perturbations such as Earth's wobble, but these are less than a second per year. Sidereal time is time by the stars. A sidereal rotation is the time it takes the Earth to make one revolution with rotation to the stars, approximately 23 hours 56 minutes 4 seconds. A mean solar day is about 3 minutes 56 seconds longer than a mean sidereal day, or more than a mean sidereal day. In
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
, sidereal time is used to predict when a
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
will reach its
highest point A list of highest points typically contains the name, elevation, and location of the highest point in each of a set of geographical regions. Such a list is important in the sport of highpointing. A partial list of highpoint lists is below: World ...
in the sky. For accurate astronomical work on land, it was usual to observe sidereal time rather than solar time to measure mean solar time, because the observations of 'fixed' stars could be measured and reduced more accurately than observations of the Sun (in spite of the need to make various small compensations, for refraction, aberration, precession, nutation and proper motion). It is well known that observations of the Sun pose substantial obstacles to the achievement of accuracy in measurement. In former times, before the distribution of accurate time signals, it was part of the routine work at any observatory to observe the sidereal times of meridian transit of selected 'clock stars' (of well-known position and movement), and to use these to correct observatory clocks running local mean sidereal time; but nowadays local sidereal time is usually generated by computer, based on time signals.
Mean solar time Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Two types of solar time are apparent solar time ( sundia ...
was a time standard used especially at sea for navigational purposes, calculated by observing apparent solar time and then adding to it a correction, the equation of time, which compensated for two known irregularities in the length of the day, caused by the ellipticity of the Earth's orbit and the obliquity of the Earth's equator and polar axis to the ecliptic (which is the plane of the Earth's orbit around the sun). It has been superseded by
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
.
Greenwich Mean Time Greenwich Mean Time (GMT) is the mean solar time at the Royal Observatory in Greenwich, London, counted from midnight. At different times in the past, it has been calculated in different ways, including being calculated from noon; as a c ...
was originally mean time deduced from meridian observations made at the Royal Greenwich Observatory (RGO). The principal meridian of that observatory was chosen in 1884 by the International Meridian Conference to be the
Prime Meridian A prime meridian is an arbitrary meridian (a line of longitude) in a geographic coordinate system at which longitude is defined to be 0°. Together, a prime meridian and its anti-meridian (the 180th meridian in a 360°-system) form a great ...
. GMT either by that name or as 'mean time at Greenwich' used to be an international time standard, but is no longer so; it was initially renamed in 1928 as Universal Time (UT) (partly as a result of ambiguities arising from the changed practice of starting the astronomical day at midnight instead of at noon, adopted as from 1 January 1925). UT1 is still in reality mean time at Greenwich. Today, GMT is a time zone but is still the legal time in the UK in winter (and as adjusted by one hour for summer time). But
Coordinated Universal Time Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of Solar time#Mean solar time, mean solar time (such as Universal Time, UT1) at 0° longitude (at the I ...
(UTC) (an atomic-based time scale which is always kept within 0.9 second of UT1) is in common actual use in the UK, and the name GMT is often used to refer to it. (See articles
Greenwich Mean Time Greenwich Mean Time (GMT) is the mean solar time at the Royal Observatory in Greenwich, London, counted from midnight. At different times in the past, it has been calculated in different ways, including being calculated from noon; as a c ...
,
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
,
Coordinated Universal Time Coordinated Universal Time or UTC is the primary time standard by which the world regulates clocks and time. It is within about one second of Solar time#Mean solar time, mean solar time (such as Universal Time, UT1) at 0° longitude (at the I ...
and the sources they cite.) Versions of
Universal Time Universal Time (UT or UT1) is a time standard based on Earth's rotation. While originally it was mean solar time at 0° longitude, precise measurements of the Sun are difficult. Therefore, UT1 is computed from a measure of the Earth's angle wit ...
such as UT0 and UT2 have been defined but are no longer in use.


Time standards for planetary motion calculations

Ephemeris time (ET) and its successor time scales described below have all been intended for astronomical use, e.g. in planetary motion calculations, with aims including uniformity, in particular, freedom from irregularities of Earth rotation. Some of these standards are examples of dynamical time scales and/or of
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
scales. Ephemeris Time was from 1952 to 1976 an official time scale standard of the
International Astronomical Union The International Astronomical Union (IAU; french: link=yes, Union astronomique internationale, UAI) is a nongovernmental organisation with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreac ...
; it was a dynamical time scale based on the orbital motion of the Earth around the Sun, from which the ephemeris second was derived as a defined fraction of the tropical year. This ephemeris second was the standard for the SI second from 1956 to 1967, and it was also the source for calibration of the caesium atomic clock; its length has been closely duplicated, to within 1 part in 1010, in the size of the current SI second referred to atomic time. This Ephemeris Time standard was non-relativistic and did not fulfil growing needs for relativistic
coordinate time In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spat ...
scales. It was in use for the official almanacs and planetary ephemerides from 1960 to 1983, and was replaced in official almanacs for 1984 and after, by numerically integrated
Jet Propulsion Laboratory Development Ephemeris Jet Propulsion Laboratory Development Ephemeris (abbreved JPL DE(number), or simply DE(number)) designates one of a series of mathematical models of the Solar System produced at the Jet Propulsion Laboratory in Pasadena, California, for use in spa ...
DE200 (based on the JPL relativistic coordinate time scale Teph). For applications at the Earth's surface, ET's official replacement was Terrestrial Dynamical Time (TDT), which maintained continuity with it. TDT is a uniform atomic time scale, whose unit is the SI second. TDT is tied in its rate to the SI second, as is International Atomic Time (TAI), but because TAI was somewhat arbitrarily defined at its inception in 1958 to be initially equal to a refined version of UT, TDT was offset from TAI, by a constant 32.184 seconds. The offset provided a continuity from Ephemeris Time to TDT. TDT has since been redefined as Terrestrial Time (TT). For the calculation of ephemerides, Barycentric Dynamical Time (TDB) was officially recommended to replace ET. TDB is similar to TDT but includes relativistic corrections that move the origin to the barycenter, hence it is a dynamical time at the barycenter. V Brumberg, S Kopeikin (1990), 'Relativistic time scales in the solar system', Celestial Mechanics and Dynamical Astronomy (1990), Vol. 48, 23-44 TDB differs from TT only in periodic terms. The difference is at most 2 milliseconds. Deficiencies were found in the definition of TDB (though not affecting Teph), and TDB has been replaced by
Barycentric Coordinate Time Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and ...
(TCB) and
Geocentric Coordinate Time Geocentric Coordinate Time (TCG - Temps-coordonnée géocentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satelli ...
(TCG), and redefined to be JPL ephemeris time argument Teph, a specific fixed linear transformation of TCB. As defined, TCB (as observed from the Earth's surface) is of divergent rate relative to all of ET, Teph and TDT/TT;P K Seidelmann & T Fukushima (1992)
"Why new time scales?"
''Astronomy & Astrophysics'' vol.265 (1992), pages 833-838, includin
Fig. 1 at p.835, a graph giving an overview of the rate differences and offsets between various standard time scales
present and past, defined by the IAU.
and the same is true, to a lesser extent, of TCG. The ephemerides of Sun, Moon and planets in current widespread and official use continue to be those calculated at the
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, La Cañada Flintridge, California ...
(updated as from 2003 to
DE405 Jet Propulsion Laboratory Development Ephemeris (abbreved JPL DE(number), or simply DE(number)) designates one of a series of mathematical models of the Solar System produced at the Jet Propulsion Laboratory in Pasadena, California, for use in space ...
) using as argument Teph.


See also

*
Atomic clock An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwe ...
*
Clock synchronization Clock synchronization is a topic in computer science and engineering that aims to coordinate otherwise independent clocks. Even when initially set accurately, real clocks will differ after some amount of time due to clock drift, caused by clocks ...
*
Clock signal In electronics and especially synchronous digital circuits, a clock signal (historically also known as ''logic beat'') oscillates between a high and a low state and is used like a metronome to coordinate actions of digital circuits. A clock si ...
*
Epoch (astronomy) In astronomy, an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body, as they are subject to per ...
* Frequency standard * Radio clock * Time in astronomy * Time signal * Time metrology * Time transfer * Timekeeping on Mars * Orbital period as unit of time


Notes


References


Citations


Sources

* * ''Explanatory Supplement to the Astronomical Almanac,'' P. K. Seidelmann, ed., University Science Books, 1992, .


External links


Current time
according to the bservatory. (get the current time.)
Systems of Time
by Dr. Demetrios Matsakis, Director, Time Service Dept., United States Naval Observatory
USNO article on the definition of seconds and leap seconds


by Steve Allen
Why is a minute divided into 60 seconds, an hour into 60 minutes, yet there are only 24 hours in a day
Ask the Experts - March 5, 2021. SCIENTIFIC AMERICAN {{DEFAULTSORT:Time Standard Timekeeping