HOME

TheInfoList



OR:

A theory of everything (TOE or TOE/ToE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the univers ...
. Finding a theory of everything is one of the major unsolved problems in physics. String theory and
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
have been proposed as theories of everything. Over the past few centuries, two theoretical frameworks have been developed that, together, most closely resemble a theory of everything. These two theories upon which all modern physics rests are
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
and
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
. General relativity is a theoretical framework that only focuses on
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
for understanding the universe in regions of both large scale and high mass: planets, stars, galaxies,
clusters of galaxies The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these o ...
etc. On the other hand, quantum mechanics is a theoretical framework that only focuses on the three non-gravitational forces for understanding the universe in regions of both very small scale and low mass: subatomic particles, atoms, molecules, etc. Quantum mechanics successfully implemented the Standard Model that describes the three non-gravitational forces: strong nuclear, weak nuclear, and electromagnetic force – as well as all observed elementary particles. General relativity and quantum mechanics have been repeatedly validated in their separate fields of relevance. Since the usual domains of applicability of general relativity and quantum mechanics are so different, most situations require that only one of the two theories be used. The two theories are considered incompatible in regions of extremely small scale – the Planck scale – such as those that exist within a black hole or during the beginning stages of the universe (i.e., the moment immediately following the Big Bang). To resolve the incompatibility, a theoretical framework revealing a deeper underlying reality, unifying gravity with the other three interactions, must be discovered to harmoniously integrate the realms of general relativity and quantum mechanics into a seamless whole: a theory of everything may be defined as a comprehensive theory that, in principle, would be capable of describing all physical phenomena in this universe. In pursuit of this goal, quantum gravity has become one area of active research. One example is string theory, which evolved into a candidate for the theory of everything, but not without drawbacks (most notably, its apparent lack of currently testable predictions) and controversy. String theory posits that at the beginning of the universe (up to 10−43 seconds after the Big Bang), the four fundamental forces were once a single fundamental force. According to string theory, every particle in the universe, at its most ultramicroscopic level ( Planck length), consists of varying combinations of vibrating strings (or strands) with preferred patterns of vibration. String theory further claims that it is through these specific oscillatory patterns of strings that a particle of unique mass and force charge is created (that is to say, the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
is a type of string that vibrates one way, while the up quark is a type of string vibrating another way, and so forth). String theory/M-theory proposes six or seven dimensions of hyperspace in addition to the four common dimensions for a ten- or eleven-dimensional
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
.


Name

Initially, the term ''theory of everything'' was used with an ironic reference to various overgeneralized theories. For example, a grandfather of Ijon Tichy – a character from a cycle of Stanisław Lem's
science fiction Science fiction (sometimes shortened to Sci-Fi or SF) is a genre of speculative fiction which typically deals with imaginative and futuristic concepts such as advanced science and technology, space exploration, time travel, parallel uni ...
stories of the 1960s – was known to work on the "
General Theory of Everything The General Theory of Everything ( pl, Ogólna Teoria Wszystkiego) is a sarcastic coinage of Stanisław Lem introduced in 1966. The biographical sketch of Ijon Tichy in "The Twenty-eighth Voyage" of Tychy's '' Star Diaries'' says that a grandfath ...
". Physicist
Harald Fritzsch Harald Fritzsch (born 10 February 1943 in Zwickau, Germany, died 16 August 2022 in München) was a German theoretical physicist known for his contributions to the theory of quarks, the development of Quantum Chromodynamics and the great unific ...
used the term in his 1977 lectures in Varenna. Physicist John Ellis claims to have introduced the acronym "TOE" into the technical literature in an article in ''
Nature Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
'' in 1986. Over time, the term stuck in popularizations of theoretical physics research.


Historical antecedents


Antiquity to 19th century

Many ancient cultures such as
Babylonian astronomers Babylonian astronomy was the study or recording of celestial objects during the early history of Mesopotamia. Babylonian astronomy seemed to have focused on a select group of stars and constellations known as Ziqpu stars. These constellations m ...
,
Indian astronomy Astronomy has long history in Indian subcontinent stretching from pre-historic to modern times. Some of the earliest roots of Indian astronomy can be dated to the period of Indus Valley civilisation or earlier. Astronomy later developed as a di ...
studied the pattern of the ''Seven Sacred Luminaires''/
Classical Planets In classical antiquity, the seven classical planets or seven luminaries are the seven moving astronomical objects in the sky visible to the naked eye: the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn. The word ''planet'' comes from ...
against the background of stars, with their interest being to relate celestial movement to human events (
astrology Astrology is a range of divinatory practices, recognized as pseudoscientific since the 18th century, that claim to discern information about human affairs and terrestrial events by studying the apparent positions of celestial objects. Di ...
), and the goal being to predict events by recording events against a time measure and then look for recurrent patterns. The debate between the universe having either a beginning or eternal cycles can be traced back to ancient
Babylonia Babylonia (; Akkadian: , ''māt Akkadī'') was an ancient Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Syria). It emerged as an Amorite-ruled state c ...
.
Hindu cosmology Hindu cosmology is the description of the universe and its states of matter, cycles within time, physical structure, and effects on living entities according to Hindu texts. Hindu cosmology is also intertwined with the idea of a creator who all ...
posits that time is infinite with a ''cyclic universe'', where the current universe was preceded and will be followed by an infinite number of universes. Time scales mentioned in
Hindu cosmology Hindu cosmology is the description of the universe and its states of matter, cycles within time, physical structure, and effects on living entities according to Hindu texts. Hindu cosmology is also intertwined with the idea of a creator who all ...
correspond to those of modern scientific cosmology. Its cycles run from our ordinary day and night to a day and night of Brahma, 8.64 billion years long. The
natural philosophy Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics, that is, nature and the physical universe. It was dominant before the development of modern science. From the ancien ...
of
atomism Atomism (from Greek , ''atomon'', i.e. "uncuttable, indivisible") is a natural philosophy proposing that the physical universe is composed of fundamental indivisible components known as atoms. References to the concept of atomism and its atom ...
appeared in several ancient traditions. In ancient
Greek philosophy Ancient Greek philosophy arose in the 6th century BC, marking the end of the Greek Dark Ages. Greek philosophy continued throughout the Hellenistic period and the period in which Greece and most Greek-inhabited lands were part of the Roman Empi ...
, the
pre-Socratic philosophers Pre-Socratic philosophy, also known as early Greek philosophy, is ancient Greek philosophy before Socrates. Pre-Socratic philosophers were mostly interested in cosmology, the beginning and the substance of the universe, but the inquiries of th ...
speculated that the apparent diversity of observed phenomena was due to a single type of interaction, namely the motions and collisions of atoms. The concept of 'atom' proposed by
Democritus Democritus (; el, Δημόκριτος, ''Dēmókritos'', meaning "chosen of the people"; – ) was an Ancient Greek pre-Socratic philosopher from Abdera, primarily remembered today for his formulation of an atomic theory of the universe. No ...
was an early philosophical attempt to unify phenomena observed in nature. The concept of 'atom' also appeared in the Nyaya- Vaisheshika school of ancient
Indian philosophy Indian philosophy refers to philosophical traditions of the Indian subcontinent. A traditional Hindu classification divides āstika and nāstika schools of philosophy, depending on one of three alternate criteria: whether it believes the Veda ...
. Archimedes was possibly the first philosopher to have described nature with axioms (or principles) and then deduce new results from them. Any "theory of everything" is similarly expected to be based on axioms and to deduce all observable phenomena from them. Following earlier atomistic thought, the
mechanical philosophy The mechanical philosophy is a form of natural philosophy which compares the universe to a large-scale mechanism (i.e. a machine). The mechanical philosophy is associated with the scientific revolution of early modern Europe. One of the first expo ...
of the 17th century posited that all forces could be ultimately reduced to contact forces between the atoms, then imagined as tiny solid particles. In the late 17th century,
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
's description of the long-distance force of gravity implied that not all forces in nature result from things coming into contact. Newton's work in his ''
Mathematical Principles of Natural Philosophy Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
'' dealt with this in a further example of unification, in this case unifying
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
's work on terrestrial gravity,
Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws o ...
's laws of planetary motion and the phenomenon of
tide Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon (and to a much lesser extent, the Sun) and are also caused by the Earth and Moon orbiting one another. Tide tables ...
s by explaining these apparent actions at a distance under one single law: the law of
universal gravitation Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the dist ...
. In 1814, building on these results, Laplace famously suggested that a sufficiently powerful intellect could, if it knew the position and velocity of every particle at a given time, along with the laws of nature, calculate the position of any particle at any other time: Laplace thus envisaged a combination of gravitation and mechanics as a theory of everything. Modern
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
implies that uncertainty is inescapable, and thus that Laplace's vision has to be amended: a theory of everything must include gravitation and quantum mechanics. Even ignoring quantum mechanics, chaos theory is sufficient to guarantee that the future of any sufficiently complex mechanical or astronomical system is unpredictable. In 1820,
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricit ...
discovered a connection between electricity and magnetism, triggering decades of work that culminated in 1865, in
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
's theory of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
. During the 19th and early 20th centuries, it gradually became apparent that many common examples of forces – contact forces, elasticity,
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the int ...
,
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
, and
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
– result from electrical interactions between the smallest particles of matter. In his experiments of 1849–50,
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
was the first to search for a unification of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
with electricity and magnetism. However, he found no connection. In 1900, David Hilbert published a famous list of mathematical problems. In Hilbert's sixth problem, he challenged researchers to find an axiomatic basis to all of physics. In this problem he thus asked for what today would be called a theory of everything.


Early 20th century

In the late 1920s, the new quantum mechanics showed that the chemical bonds between
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, a ...
s were examples of (quantum) electrical forces, justifying Dirac's boast that "the underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known". After 1915, when
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theor ...
published the theory of gravity (
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
), the search for a unified field theory combining gravity with electromagnetism began with a renewed interest. In Einstein's day, the strong and the weak forces had not yet been discovered, yet he found the potential existence of two other distinct forces, gravity and electromagnetism, far more alluring. This launched his 40-year voyage in search of the so-called ''"unified field theory"'' that he hoped would show that these two forces are really manifestations of one grand, underlying principle. During the last few decades of his life, this ambition alienated Einstein from the rest of mainstream of physics, as the mainstream was instead far more excited about the emerging framework of quantum mechanics. Einstein wrote to a friend in the early 1940s, "I have become a lonely old chap who is mainly known because he doesn't wear socks and who is exhibited as a curiosity on special occasions." Prominent contributors were
Gunnar Nordström Gunnar Nordström (12 March 1881 – 24 December 1923) was a Finnish theoretical physicist best remembered for his theory of gravitation, which was an early competitor of general relativity. Nordström is often designated by modern writers as ' ...
, Hermann Weyl, Arthur Eddington, David Hilbert, Theodor Kaluza, Oskar Klein (see Kaluza–Klein theory), and most notably, Albert Einstein and his collaborators. Einstein searched in earnest for, but ultimately failed to find, a unifying theory (see Einstein–Maxwell–Dirac equations).


Late 20th century and the nuclear interactions

In the 20th century, the search for a unifying theory was interrupted by the discovery of the
strong Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United S ...
and
weak Weak may refer to: Songs * "Weak" (AJR song), 2016 * "Weak" (Melanie C song), 2011 * "Weak" (SWV song), 1993 * "Weak" (Skunk Anansie song), 1995 * "Weak", a song by Seether from '' Seether: 2002-2013'' Television episodes * "Weak" (''Fear t ...
nuclear forces, which differ both from gravity and from electromagnetism. A further hurdle was the acceptance that in a theory of everything, quantum mechanics had to be incorporated from the outset, rather than emerging as a consequence of a deterministic unified theory, as Einstein had hoped. Gravity and electromagnetism are able to coexist as entries in a list of classical forces, but for many years it seemed that gravity could not be incorporated into the quantum framework, let alone unified with the other fundamental forces. For this reason, work on unification, for much of the 20th century, focused on understanding the three forces described by quantum mechanics: electromagnetism and the weak and strong forces. The first two were combined in 1967–68 by Sheldon Glashow, Steven Weinberg, and
Abdus Salam Mohammad Abdus Salam Salam adopted the forename "Mohammad" in 1974 in response to the anti-Ahmadiyya decrees in Pakistan, similarly he grew his beard. (; ; 29 January 192621 November 1996) was a Punjabis, Punjabi Pakistani theoretical physici ...
into the electroweak force. Electroweak unification is a broken symmetry: the electromagnetic and weak forces appear distinct at low energies because the particles carrying the weak force, the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
, have non-zero masses ( and , respectively), whereas the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
, which carries the electromagnetic force, is massless. At higher energies W bosons and Z bosons can be created easily and the unified nature of the force becomes apparent. While the strong and electroweak forces coexist under the Standard Model of particle physics, they remain distinct. Thus, the pursuit of a theory of everything remained unsuccessful: neither a unification of the strong and electroweak forces – which Laplace would have called 'contact forces' – nor a unification of these forces with gravitation had been achieved.


Modern physics


Conventional sequence of theories

A theory of everything would unify all the fundamental interactions of nature:
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
, the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
, the weak interaction, and
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
. Because the weak interaction can transform elementary particles from one kind into another, the theory of everything should also predict all the various different kinds of particles possible. The usual assumed path of theories is given in the following graph, where each unification step leads one level up on the graph. In this graph, electroweak unification occurs at around 100 GeV, grand unification is predicted to occur at 1016 GeV, and unification of the GUT force with gravity is expected at the Planck energy, roughly 1019 GeV. Several
Grand Unified Theories A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this ...
(GUTs) have been proposed to unify electromagnetism and the weak and strong forces. Grand unification would imply the existence of an electronuclear force; it is expected to set in at energies of the order of 1016 GeV, far greater than could be reached by any currently feasible particle accelerator. Although the simplest grand unified theories have been experimentally ruled out, the idea of a grand unified theory, especially when linked with supersymmetry, remains a favorite candidate in the theoretical physics community. Supersymmetric grand unified theories seem plausible not only for their theoretical "beauty", but because they naturally produce large quantities of dark matter, and because the inflationary force may be related to grand unified theory physics (although it does not seem to form an inevitable part of the theory). Yet grand unified theories are clearly not the final answer; both the current standard model and all proposed GUTs are
quantum field theories In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles ...
which require the problematic technique of renormalization to yield sensible answers. This is usually regarded as a sign that these are only
effective field theories In physics, an effective field theory is a type of approximation, or effective theory, for an underlying physical theory, such as a quantum field theory or a statistical mechanics model. An effective field theory includes the appropriate degrees ...
, omitting crucial phenomena relevant only at very high energies. The final step in the graph requires resolving the separation between quantum mechanics and gravitation, often equated with general relativity. Numerous researchers concentrate their efforts on this specific step; nevertheless, no accepted theory of quantum gravity, and thus no accepted theory of everything, has emerged with observational evidence. It is usually assumed that the theory of everything will also solve the remaining problems of grand unified theories. In addition to explaining the forces listed in the graph, a theory of everything may also explain the status of at least two candidate forces suggested by modern
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
: an inflationary force and
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
. Furthermore, cosmological experiments also suggest the existence of
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
, supposedly composed of fundamental particles outside the scheme of the standard model. However, the existence of these forces and particles has not been proven.


String theory and M-theory

Since the 1990s, some physicists such as Edward Witten believe that 11-dimensional
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
, which is described in some limits by one of the five
perturbative In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for w ...
superstring theories, and in another by the maximally- supersymmetric 11-dimensional supergravity, is the theory of everything. There is no widespread consensus on this issue. One remarkable property of string/
M-theory M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witt ...
is that seven extra dimensions are required for the theory's consistency, on top of the four dimensions in our universe. In this regard, string theory can be seen as building on the insights of the Kaluza–Klein theory, in which it was realized that applying general relativity to a 5-dimensional universe, with one space dimension small and curled up, looks from the 4-dimensional perspective like the usual general relativity together with Maxwell's electrodynamics. This lent credence to the idea of unifying
gauge Gauge ( or ) may refer to: Measurement * Gauge (instrument), any of a variety of measuring instruments * Gauge (firearms) * Wire gauge, a measure of the size of a wire ** American wire gauge, a common measure of nonferrous wire diameter, es ...
and
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
interactions, and to extra dimensions, but did not address the detailed experimental requirements. Another important property of string theory is its supersymmetry, which together with extra dimensions are the two main proposals for resolving the
hierarchy problem In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than grav ...
of the standard model, which is (roughly) the question of why gravity is so much weaker than any other force. The extra-dimensional solution involves allowing gravity to propagate into the other dimensions while keeping other forces confined to a 4-dimensional spacetime, an idea that has been realized with explicit stringy mechanisms. Research into string theory has been encouraged by a variety of theoretical and experimental factors. On the experimental side, the particle content of the standard model supplemented with neutrino masses fits into a spinor representation of SO(10), a subgroup of E8 that routinely emerges in string theory, such as in
heterotic string theory In string theory, a heterotic string is a closed string (or loop) which is a hybrid ('heterotic') of a superstring and a bosonic string. There are two kinds of heterotic string, the heterotic SO(32) and the heterotic E8 × E8, abbrevia ...
or (sometimes equivalently) in
F-theory In theoretical physics, F-theory is a branch of string theory developed by Iranian physicist Cumrun Vafa. The new vacua described by F-theory were discovered by Vafa and allowed string theorists to construct new realistic vacua — in the fo ...
. String theory has mechanisms that may explain why fermions come in three hierarchical generations, and explain the mixing rates between quark generations. On the theoretical side, it has begun to address some of the key questions in quantum gravity, such as resolving the black hole information paradox, counting the correct entropy of black holes and allowing for
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
-changing processes. It has also led to many insights in pure mathematics and in ordinary, strongly-coupled
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie grou ...
due to the Gauge/String duality. In the late 1990s, it was noted that one major hurdle in this endeavor is that the number of possible 4-dimensional universes is incredibly large. The small, "curled up" extra dimensions can be compactified in an enormous number of different ways (one estimate is 10500 ) each of which leads to different properties for the low-energy particles and forces. This array of models is known as the string theory landscape. One proposed solution is that many or all of these possibilities are realized in one or another of a huge number of universes, but that only a small number of them are habitable. Hence what we normally conceive as the
fundamental constants In physics, a dimensionless physical constant is a physical constant that is dimensionless, i.e. a pure number having no units attached and having a numerical value that is independent of whatever system of units may be used. For example, if one co ...
of the universe are ultimately the result of the anthropic principle rather than dictated by theory. This has led to criticism of string theory, arguing that it cannot make useful (i.e., original,
falsifiable Falsifiability is a standard of evaluation of scientific theories and hypotheses that was introduced by the philosopher of science Karl Popper in his book '' The Logic of Scientific Discovery'' (1934). He proposed it as the cornerstone of a so ...
, and verifiable) predictions and regarding it as a
pseudoscience Pseudoscience consists of statements, beliefs, or practices that claim to be both scientific and factual but are incompatible with the scientific method. Pseudoscience is often characterized by contradictory, exaggerated or unfalsifiable claim ...
/
philosophy Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. ...
. Others disagree, and string theory remains an active topic of investigation in theoretical physics.


Loop quantum gravity

Current research on loop quantum gravity may eventually play a fundamental role in a theory of everything, but that is not its primary aim. Loop quantum gravity also introduces a lower bound on the possible length scales. There have been recent claims that loop quantum gravity may be able to reproduce features resembling the Standard Model. So far only the first generation of fermions ( leptons and quarks) with correct parity properties have been modelled by Sundance Bilson-Thompson using preons constituted of braids of spacetime as the building blocks. However, there is no derivation of the Lagrangian that would describe the interactions of such particles, nor is it possible to show that such particles are fermions, nor that the gauge groups or interactions of the Standard Model are realised. Utilization of quantum computing concepts made it possible to demonstrate that the particles are able to survive quantum fluctuations. This model leads to an interpretation of electric and color charge as topological quantities (electric as number and chirality of twists carried on the individual ribbons and colour as variants of such twisting for fixed electric charge). Bilson-Thompson's original paper suggested that the higher-generation fermions could be represented by more complicated braidings, although explicit constructions of these structures were not given. The electric charge, color, and parity properties of such fermions would arise in the same way as for the first generation. The model was expressly generalized for an infinite number of generations and for the weak force bosons (but not for photons or gluons) in a 2008 paper by Bilson-Thompson, Hackett, Kauffman and Smolin.


Other attempts

Among other attempts to develop a theory of everything is the theory of
causal fermion system The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives q ...
s, giving the two current physical theories (
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
and quantum field theory) as limiting cases. Another theory is called Causal Sets. As some of the approaches mentioned above, its direct goal isn't necessarily to achieve a theory of everything but primarily a working theory of quantum gravity, which might eventually include the standard model and become a candidate for a theory of everything. Its founding principle is that spacetime is fundamentally discrete and that the spacetime events are related by a
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
. This partial order has the physical meaning of the causality relations between relative past and future distinguishing spacetime events. Causal dynamical triangulation does not assume any pre-existing arena (dimensional space), but rather attempts to show how the spacetime fabric itself evolves. Another attempt may be related to ER=EPR, a conjecture in physics stating that entangled particles are connected by a
wormhole A wormhole ( Einstein-Rosen bridge) is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate ...
(or Einstein–Rosen bridge).


Present status

At present, there is no candidate theory of everything that includes the standard model of particle physics and general relativity and that, at the same time, is able to calculate the fine-structure constant or the mass of the electron. Most particle physicists expect that the outcome of ongoing experiments – the search for new particles at the large particle accelerators and for
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
– are needed in order to provide further input for a theory of everything.


Arguments against

In parallel to the intense search for a theory of everything, various scholars have seriously debated the possibility of its discovery.


Gödel's incompleteness theorem

A number of scholars claim that Gödel's incompleteness theorem suggests that any attempt to construct a theory of everything is bound to fail. Gödel's theorem, informally stated, asserts that any formal theory sufficient to express elementary arithmetical facts and strong enough for them to be proved is either inconsistent (both a statement and its denial can be derived from its axioms) or incomplete, in the sense that there is a true statement that can't be derived in the formal theory. Stanley Jaki, in his 1966 book ''The Relevance of Physics'', pointed out that, because any "theory of everything" will certainly be a consistent non-trivial mathematical theory, it must be incomplete. He claims that this dooms searches for a deterministic theory of everything. Freeman Dyson has stated that "Gödel's theorem implies that pure mathematics is inexhaustible. No matter how many problems we solve, there will always be other problems that cannot be solved within the existing rules. ��Because of Gödel's theorem, physics is inexhaustible too. The laws of physics are a finite set of rules, and include the rules for doing mathematics, so that Gödel's theorem applies to them." Stephen Hawking was originally a believer in the Theory of Everything, but after considering Gödel's Theorem, he concluded that one was not obtainable. "Some people will be very disappointed if there is not an ultimate theory that can be formulated as a finite number of principles. I used to belong to that camp, but I have changed my mind."
Jürgen Schmidhuber Jürgen Schmidhuber (born 17 January 1963) is a German computer scientist most noted for his work in the field of artificial intelligence, deep learning and artificial neural networks. He is a co-director of the Dalle Molle Institute for Artific ...
(1997) has argued against this view; he asserts that Gödel's theorems are irrelevant for
computable Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is clos ...
physics. In 2000, Schmidhuber explicitly constructed limit-computable, deterministic universes whose pseudo-randomness based on undecidable, Gödel-like
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a ...
s is extremely hard to detect but does not at all prevent formal theories of everything describable by very few bits of information. Related critique was offered by Solomon Feferman and others. Douglas S. Robertson offers Conway's game of life as an example: The underlying rules are simple and complete, but there are formally undecidable questions about the game's behaviors. Analogously, it may (or may not) be possible to completely state the underlying rules of physics with a finite number of well-defined laws, but there is little doubt that there are questions about the behavior of physical systems which are formally undecidable on the basis of those underlying laws. Since most physicists would consider the statement of the underlying rules to suffice as the definition of a "theory of everything", most physicists argue that Gödel's Theorem does ''not'' mean that a theory of everything cannot exist. On the other hand, the scholars invoking Gödel's Theorem appear, at least in some cases, to be referring not to the underlying rules, but to the understandability of the behavior of all physical systems, as when Hawking mentions arranging blocks into rectangles, turning the computation of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s into a physical question. This definitional discrepancy may explain some of the disagreement among researchers.


Fundamental limits in accuracy

No physical theory to date is believed to be precisely accurate. Instead, physics has proceeded by a series of "successive approximations" allowing more and more accurate predictions over a wider and wider range of phenomena. Some physicists believe that it is therefore a mistake to confuse theoretical models with the true nature of reality, and hold that the series of approximations will never terminate in the "truth". Einstein himself expressed this view on occasions. On the other hand, it is often claimed that, despite the apparently ever-increasing complexity of the mathematics of each new theory, in a deep sense associated with their underlying gauge symmetry and the number of
dimensionless physical constant In physics, a dimensionless physical constant is a physical constant that is dimensionless, i.e. a pure number having no units attached and having a numerical value that is independent of whatever system of units may be used. For example, if one co ...
s, the theories are becoming simpler. If this is the case, the process of simplification cannot continue indefinitely.


Definition of fundamental laws

There is a philosophical debate within the physics community as to whether a theory of everything deserves to be called ''the'' fundamental law of the universe. One view is the hard reductionist position that the theory of everything is the fundamental law and that all other theories that apply within the universe are a consequence of the theory of everything. Another view is that emergent laws, which govern the behavior of complex systems, should be seen as equally fundamental. Examples of emergent laws are the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unle ...
and the theory of
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Cha ...
. The advocates of emergence argue that emergent laws, especially those describing complex or living systems are independent of the low-level, microscopic laws. In this view, emergent laws are as fundamental as a theory of everything. The debates do not make the point at issue clear. Possibly the only issue at stake is the right to apply the high-status term "fundamental" to the respective subjects of research. A well-known debate over this took place between Steven Weinberg and Philip Anderson.


Impossibility of calculation

WeinbergWeinberg (1993) p. 5 points out that calculating the precise motion of an actual projectile in the Earth's atmosphere is impossible. So how can we know we have an adequate theory for describing the motion of projectiles? Weinberg suggests that we know ''principles'' (Newton's laws of motion and gravitation) that work "well enough" for simple examples, like the motion of planets in empty space. These principles have worked so well on simple examples that we can be reasonably confident they will work for more complex examples. For example, although
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
includes equations that do not have exact solutions, it is widely accepted as a valid theory because all of its equations with exact solutions have been experimentally verified. Likewise, a theory of everything must work for a wide range of simple examples in such a way that we can be reasonably confident it will work for every situation in physics.


See also

* Absolute (philosophy) *
Argument from beauty The argument from beauty (also the aesthetic argument) is an argument for the existence of a realm of immaterial ideas or, most commonly, for the existence of God, that roughly states that the elegance of the laws of physics or the elegant laws of ...
* Attractor * Beyond black holes * Beyond the standard model * cGh physics * Chronology of the universe * ER=EPR * Grand Unified Theory *
Holographic principle The holographic principle is an axiom in string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a ...
* Mathematical beauty *
Mathematical universe hypothesis In physics and cosmology, the mathematical universe hypothesis (MUH), also known as the ultimate ensemble theory and struogony (from mathematical structure, Latin: struō), is a speculative " theory of everything" (TOE) proposed by cosmologist Max ...
* Multiverse * Penrose interpretation *
Standard Model (mathematical formulation) This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group . The theory is commonly viewed as describing the fundamental set ...
*
Superfluid vacuum theory Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is viewed as superfluid or as a Bose–Einstei ...
(SVT) * ''
The Theory of Everything (2014 film) ''The Theory of Everything'' is a 2014 biographical romantic drama film directed by James Marsh. Set at the University of Cambridge, it details the life of the theoretical physicist Stephen Hawking. It was adapted by Anthony McCarten from the ...
'' * Timeline of the Big Bang * Zero-energy universe


References


Bibliography

* Pais, Abraham (1982) '' Subtle is the Lord: The Science and the Life of Albert Einstein'' (Oxford University Press, Oxford, . Ch. 17, * Weinberg, Steven (1993) ''Dreams of a Final Theory: The Search for the Fundamental Laws of Nature'', Hutchinson Radius, London, *
Corey S. Powell Corey Stevenson Powell (born January 7, 1966) is an American science writer and journalist, particularly known for his writing for '' Discover'' magazine, of which he became Editor-in-Chief in 2012, and his longstanding collaboration with Bill N ...
''Relativity versus quantum mechanics: the battle for the universe'', The Guardian (2015) https://www.theguardian.com/news/2015/nov/04/relativity-quantum-mechanics-universe-physicists


External links


The Elegant Universe
'' Nova'' episode about the search for the theory of everything and string theory.
Theory of Everything
freeview video by the
Vega Science Trust The Vega Science Trust was a not-for-profit organisation which provided a platform from which scientists can communicate directly with the public on science by using moving image, sound and other related means. The Trust closed in 2012 but the web ...
, BBC and
Open University The Open University (OU) is a British Public university, public research university and the largest university in the United Kingdom by List of universities in the United Kingdom by enrolment, number of students. The majority of the OU's underg ...
.
The Theory of Everything
Are we getting closer, or is a final theory of matter and the universe impossible? Debate between John Ellis (physicist),
Frank Close Francis Edwin Close, (born 24 July 1945) is a particle physicist who is Emeritus Professor of Physics at the University of Oxford and a Fellow of Exeter College, Oxford. Education Close was a pupil at King's School, Peterborough (then a gra ...
and Nicholas Maxwell.
Why The World Exists
a discussion between physicist Laura Mersini-Houghton, cosmologist
George Francis Rayner Ellis George Francis Rayner Ellis, FRS, Hon. FRSSAf (born 11 August 1939), is the emeritus distinguished professor of complex systems in the Department of Mathematics and Applied Mathematics at the University of Cape Town in South Africa. He co-aut ...
and philosopher David Wallace about dark matter, parallel universes and explaining why these and the present Universe exist.
Theories of Everything
BBC Radio 4 discussion with Brian Greene, John Barrow & Val Gibson (''In Our Time'', Mar. 25, 2004) {{Authority control Physics beyond the Standard Model Theoretical physics Theories of gravity