HOME

TheInfoList



OR:

Trionic T5.5 is an
engine management system An engine control unit (ECU), also commonly called an engine control module (ECM), is a type of electronic control unit that controls a series of actuators on an internal combustion engine to ensure optimal engine performance. It does this by re ...
in the
Saab Saab or SAAB may refer to: Brands and enterprises * Saab Group, a Swedish aerospace and defence company, formerly known as SAAB, and later as Saab AB ** Datasaab, a former computer company, started as spin off from Saab AB * Saab Automobile, a fo ...
Trionic Trionic is an engine management system developed by Saab Automobile. It consists of an engine control unit (ECU) that controls 3 engine aspects: # Ignition timing # Fuel injection # Acts as a boost controller. The numerical prefix 'tri-' in Trioni ...
range. It controls ignition, fuel injection and turbo boost pressure. The system was introduced in the 1993
Saab 9000 2.3 Turbo Saab or SAAB may refer to: Brands and enterprises * Saab Group, a Swedish aerospace and defence company, formerly known as SAAB, and later as Saab AB ** Datasaab, a former computer company, started as spin off from Saab AB * Saab Automobile, a fo ...
with B234L and B234R engine.


Changes

Since 1994 a number of changes have occurred. *1995. Four wire oxygen sensor, electronic heat plates in intake manifold (not in US and CA markets). K line is connected via VSS (Vehicle Security System) to enable immobilizing (certain markets). Vacuum pump for the vacuum servo assisted brake system with some control from Trionic is used on automobiles with automatic transmission. *1996. OBD II diagnostics on US and CA markets, which means two lambda probes. *1996, 5. Leakage diagnostics of the EVAP system on the OBD II variant. *1997. Heat plates are removed. *1998, 5. (
Saab 9-3 The Saab 9-3 (pronounced ''nine-three'') is a compact executive car initially developed and manufactured by the Swedish automaker Saab. The first generation 9-3 (1998-2003) is based on the GM2900 platform, changing to the GM Epsilon platf ...
). K-line is connected via MIU (Main Instrument Unit) to enable immobilizing from TWICE (Theft Warning Integrated Central Electronics) (not in software for markets: US and CA). Fuel pump relay is electrically supplied from main relay. Request signal for Air Condition is feed from MIU. Electrical pre heating on oxygen sensor is supplied from main relay. Requested boost pressure is raised somewhat on automobiles with manual gearbox. SID message when leakage in EVAP-system is confirmed, applicable in
On-Board Diagnostics On-board diagnostics (OBD) is a term referring to a vehicle's self-diagnostic and reporting capability. OBD systems give the vehicle owner or repair technician access to the status of the various vehicle sub-systems. The amount of diagnostic inf ...
II variants. *1998. Two new engine variants; B204R and B204E, B204E were available with manual gearbox only and demanded high octane gasoline to deliver the stated torque. B204E is lacking boost pressure control, this engine wasn’t available on US and CA markets. On the Swedish market automobiles is equipped with the B204E engine, OBD II diagnostics and ORVR (On board Refuelling Vapour Recovery system), a system that makes sure that the gasoline vapour doesn’t escape into the surrounding air during refuelling.


Description

Saab Trionic’s ignition system consists of an ignition cassette with four ignition coils, one for each spark plug. The ignition system is capacitive. The spark plugs are used as sensors to detect combustion and pre-ignition/pinging. This renders camshaft position detector and knock sensor redundant. This function also enables effective detection of misfires, which is an OBD II demand. The fuel injection is fully sequential and is dependent on the MAP (Manifold Absolute Pressure). Boost pressure control (L and R engines) utilises a solenoid valve pneumatically connected to the turbocharger’s waste gate. The system was fitted on models
Saab 900 The Saab 900 is a mid-sized automobile which was produced by Saab from 1978 until 1998 in two generations; the first from 1978 to 1993, and the second from 1994 to 1998. The first-generation car was based on the Saab 99 chassis, though with ...
,
Saab 9000 The Saab 9000 is an automobile produced by the Swedish company Saab from 1984 to 1998. Representing the company's foray into the executive car scene, it was developed as a result of the successes of the turbocharged 99 and 900 models. The 9000 r ...
and
Saab 9-3 The Saab 9-3 (pronounced ''nine-three'') is a compact executive car initially developed and manufactured by the Swedish automaker Saab. The first generation 9-3 (1998-2003) is based on the GM2900 platform, changing to the GM Epsilon platf ...
. This information is however most accurate for the SAAB 900.


Fuel


Fuel injector valves

The fuel injector valves are of a solenoid type with needle and seat. They are opened by a current flowing through the injector's coil and are closed by a strong spring when the current is switched off. To ensure as optimal combustion as possible and with that lower exhaust emission the injectors are equipped with four holes, which gives a good distribution of the fuel. The squirts of fuel are very exact positioned (two jets on the backside on each inlet valve). This put very high demands on the fixation of the injectors. To secure this fixation the injectors are fixed in pairs by a special retainer between cylinders 1 – 2 and 3 – 4. The injectors are electrically supplied from the main relay, while the ECU grounds the injectors.


Fuel injection


Pre-injection

When the ignition is switched on, the main relay and fuel pump relay are activated during a few seconds. As soon as the ECU gets the cranking signal (from the crankshaft sensor) it initiates a coolant temperature dependent
fuel injection Fuel injection is the introduction of fuel in an internal combustion engine, most commonly automotive engines, by the means of an injector. This article focuses on fuel injection in reciprocating piston and Wankel rotary engines. All com ...
with all four injectors simultaneously which ensures a fast engine start. If the engine is started and shortly after is switched off a new pre-injection is initiated after the ignition has been switched off for 45 seconds.


Calculating of injection time

To decide how much fuel needs to be injected into each intake runner the ECU calculates the air mass that had been drawn into the cylinder. The calculation makes use of the cylinder volume (the B204 engine has a displacement of 0.5 litres per cylinder). That cylinder volume holds equal amount of air which has a density and thus a certain mass. The air density is calculated using the
absolute pressure Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressu ...
and temperature in the intake manifold. The air mass for combustion has now been calculated and that value is divided by 14.7 (
stoichiometric Stoichiometry refers to the relationship between the quantities of reactants and products before, during, and following chemical reactions. Stoichiometry is founded on the law of conservation of mass where the total mass of the reactants equ ...
relation for gasoline mass to air mass) to determine the required fuel mass for each combustion to inject. Since the flow capacity of the injector and the density of the fuel (pre programmed values) are known, the ECU can calculate the duration of the injection. Using the
oxygen sensor An oxygen sensor (or lambda sensor, where lambda refers to air–fuel equivalence ratio, usually denoted by λ) or probe or sond, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analysed. It was d ...
1 the injection duration is corrected so stoichiometric combustion is obtained. When hard acceleration occurs, the lambda correction is masked and Wide Open Throttle (WOT) enrichment occurs for maximum performance. When opening the throttle, acceleration enrichment (''accelerationsupprikning'' in Swedish) occurs and when closing the throttle deceleration emaciation (''decelartionsavmagring'' in Swedish) occurs. During a cold start and warm up, before lambda correction is activated, coolant temperature dependable fuel enrichment occurs. With a warm engine and normal battery voltage the duration of injection varies between 2,5 ms at idle and approx. 18 – 20 ms at full torque.


Lambda correction

The catalyst requires that the fuel/air mixture is stoichiometric. This means that the mixture is neither rich or lean, it is exactly 14,7 kg air to 1 kg gasoline (Lambda=1). That is why the system is equipped with an oxygen sensor in the forward part of the exhaust system. The sensor is connected to pin 23 in the ECU and is grounded in the ECU via pin 47. The exhaust fumes pass the oxygen sensor. The content of oxygen in the exhaust fumes is measured through a chemical reaction, this results in an output voltage. If the engine runs rich (Lambda lower than 1) the output voltage would be more than 0.45 V and if the engine runs lean (Lambda higher than 1) the output voltage would be less than 0.45 V. The output voltage swings about 0.45 V when Lambda passes 1. The ECU continuously corrects the injection duration so that Lambda=1 is always met. To be able to function the oxygen sensor needs to be hot, this requirement is meet by electrically pre heat the sensor. The pre heating element is fed by B+ via fuse 38 and the main relay, the sensor is grounded in the ECU via pin 50. The ECU estimates the temperature on the exhaust gases (EGT) on the basis of the engine load and the engines RPM. At high EGT the electrical pre heating is disconnected. The lambda correction is masked during the engines first 640 revolutions after start if the coolant temperature exceeds 18℃ (64F) at load ranges over idle and under WOT or 32℃ (90F) at idle.


Adaptation

The ECU calculates the injection duration on basis of MAP and intake temperature. Injection duration are then corrected by multiplication of a correction factor, which is fetched from main fuel matrix (huvudbränslematrisen in Swedish) and is dependable on MAP and RPM. The need to correct the injection duration is due that the volumetric efficiency of the cylinder is dependent on the engines RPM. The last correction is made with the lambda correction, this results in a stoichiometric combustion (Lambda=1). The lambda correction is allowed to adjust the calculated injection duration by ±25%. The ECU can change the correction factors in the main fuel matrix on basis of the lambda correction, this ensures good driveability, fuel consumption and emissions when lambda correction isn’t activated. This is called Adaptation.


Pointed adaptation

If the ECU calculates the injection duration to 8 ms but the lambda correction adjusts it to 9 ms due low fuel pressure the ECU will "learn" the new injection duration. This is done by changing the correction factor for that particular RPM and load point in the main fuel matrix to a new correction factor resulting in 9 ms injection duration. The correction factor in this example will be raised by 9/8 (+12%). The pointed adaptation can change the points in the main fuel matrix by ±25%. Adaptation occurs every fifth minute and takes 30 seconds to finish, the criteria for the adaptation are: Lambda correction is activated and the coolant temperature is above 64℃ (147F). During the adaptation the ventilation valve on the carbon canister is held close.


Global adaptation

The global adaptation on OBDII variants occurs during driving; on non OBDII variants the global adaptation occurs 15 minutes after engine shut down. When the engine is inside a defined load and RPM range (60 – 120 kPa and 2000 – 3000 RPM) no pointed adaptation will occur all points in the fuel matrix will be changed instead by a multiplication factor. Global adaptation can change the points in the main fuel matrix by ±25% (Tech2 shows ±100%). Adaptation occurs every fifth minute and takes 30 seconds to finish, the criteria for the adaptation are: Lambda correction is activated and the coolant temperature is above 64℃ (147F). During the adaptation the ventilation valve on the carbon canister is held close.


Fuel cut

With fully closed throttle and engine RPM over 1900 RPM and with third, fourth and fifth gear a
fuel cut A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but ...
will occur after a small delay (some second). On automobiles with automatic transmission fuel cut is active in all stages. The injectors are reactivated when the RPM hits 1400 RPM.


Fuel consumption measurement

The wire from the ECU to the third injector is also connected to the main instrument. The main instrument calculates the fuel consumption based on the injection pulses duration. The fuel consumption is used to help getting an accurate presentation of the fuel level in the fuel tank and to calculate average fuel consumption in SID.


Turbo boost pressure


Basic charging pressure

Basic charging pressure is fundamental for
Automatic Performance Control Automatic Performance Control (APC) was the first engine knock and boost control system. The APC was invented by Per Gillbrand at the Swedish car maker SAAB. SAAB introduced it on the turbo charged Saab H engines in 1982, and the APC was fitte ...
(APC). Basic charging pressure is mechanically adjusted on the actuators pushrod between the actuator and the waste gate. At to low basic charging pressure the engine doesn’t revs up as expected when the throttle is opened quickly. At to high basic charging pressure a negative adaptation occurs and maximum charging pressure cannot be achieved. In addition there is a substantial risk of engine damage since the charging pressure can’t be lowered enough when regulating with attention to pre ignition/pinging. Basic charging pressure shall be 0,40 ±0,03 bar (5,80 ±0,43 PSI). After adjustment the push rod must have at least two turns (2 mm) pre tension when connecting to the waste gate lever. The purpose with that is to make sure that the waste gate is held close when not affected. On new turbo chargers the basic charging pressure tends to be near or spot on the upper tolerance when the pre tension is two turns. The pre tension may never be lesser than two turns (2 mm). When checking the basic charging pressure it shall be noted that the pressure decreases at high RPM and increases at low outside temperatures.


Charging pressure regulation

Charging pressure regulation utilises a two coiled three way solenoid valve pneumatically connected with hoses to the turbo charger’s waste gate, the turbo chargers outlet and the compressor’s inlet. The solenoid valve is electrically supplied from +54 via fuse 13 and is controlled by the ECU via its pin 26 and pin 2. The control voltage is pulse width modulated (PWM) at 90 Hz below 2500 RPM and 70 Hz above 2500 RPM. The rationale for this change is to avoid resonance phenomena in the pneumatic hoses. By grounding pin2 longer than pin 26 the charging pressure is decreased and vice verse, when pin 26 is grounded longer than pin 2 the charging pressure is increased. To be able to regulate the charging pressure the ECU must at first calculate a requested pressure, a pressure value that the system must strive for. This is done by taking a pre programmed value (matrix of values established in respect of RPM and throttle opening). At WOT the pressure values for each RPM are selected to make sure that the engine gets the requested torque. When one or both of the following criteria are met, a limitation of the charging pressure is set. * In first, second and reverse gear there is an RPM dependable maximum value. The ECU calculates which gear that is in use by comparing the speed of the automobile and the engines RPM. * When pre ignition/pinging occurs a maximum charge pressure is set on the basis of a mean value from each cylinders retarding of the ignition. One or both of the following criteria initiates a lowering of the charging boost pressure to basic boost pressure. * When the brake pedal is pressed down and pin 15 on the ECU is supplied with battery voltage. * Certain fault codes is set (Faulty throttle position sensor (TPS), pressure sensor, pre ignition/pinging signal or charging pressure regulation) or low battery voltage.


Computing, adaptation

When the required charge pressure has finally been calculated it is converted to the PWM signal that controls the solenoid valve, The ECU then controls that the actual pressure (measured by the pressure sensor) corresponds with the required pressure. If needed the PWM is fine tuned by multiplication of a correction factor. The correction factor (adaptation) is then stored in the memory of the ECU and is always used in the calculation of the PWM signal. The rationale with this is to make sure that the actual pressure as soon as possible will be equal to the required after a change of the load has occurred.


Ignition timing


Ignition cassette

The red
ignition Ignition may refer to: Science and technology * Firelighting, the human act of creating a fire for warmth, cooking and other uses * Combustion, an exothermic chemical reaction between a fuel and an oxidant * Fusion ignition, the point at which a ...
cassette used with Trionic 5 is mounted on the valve cover on top of the spark plugs. The ignition cassette houses four ignition coils/transformers whose secondary coil is direct connected to the spark plugs. The cassette is electrically supplied with battery voltage from the main relay (B+) and is grounded in an earth point. When the main relay is activated the battery voltage is reformed to 400 V DC which is stored in a capacitor. 400 V voltage is connected to one of the poles of the primary coil in the four spark coils. To the ignition cassette there are four triggering lines connected from the Trionic ECU, pin 9 (cyl. 1), pin 10 (cyl. 2), pin 11 (cyl. 3) and pin 12 (cyl. 4). When the ECU is grounding pin 9, the primary coil for the first cylinder is grounded (via the ignition cassettes B+ intake) and 400 V is transformed up to a maximum of 40 kV in the secondary coil for cyl. 1. The same procedure is used for controlling the
ignition timing In a spark ignition internal combustion engine, ignition timing is the timing, relative to the current piston position and crankshaft angle, of the release of a spark in the combustion chamber near the end of the compression stroke. The need f ...
of the rest of the cylinders.


Ignition regulation

At start the ignition point is 10° BTDC. To facilitate start when coolant temperature is below 0°C the ECU will ground each trigger line 210 times/second between 10° BTDC and 20° ATDC, at which a “multi spark” will appear. The function is active up to an engine speed of 900 RPM. At idle a special ignition matrix is utilised. Normal ignition point is 6°-8° BTDC. If the engine stalls e.g. cooling fan activation the ignition point is advanced up to 20 ° BTDC in order to increase the engines torque to restore the idle RPM. In the same way the ignition is retarded if the engines RPM is increased. When the TPS senses an increase in throttle opening the ECU leaves the idle ignition timing map and regulates the ignition timing in respect of load and engine speed. During engine operations the Ignition cassette continuously monitors the ion currents in the cylinders and sends a signal to the Trionic ECU, pin 44, in an event of knocking. The logic for this function rests solely in the ignition cassette and is adaptive to be able to handle disturbing fuel additives. The Trionic ECU is well aware which cylinder that has ignited and could hence cope with the information feed through one pin. The signal to pin 44 and ion current in the combustion chamber is related to each other, when this signal reaches a certain level the ECU interprets this as a knocking event and firstly lowering the ignition advance by 1,5° on this cylinder. If the knocking is repeated the ignition advance is lowered further 1,5 ° up to 12°. In case of the same lowering of the ignition timing advance in all cylinders the ECU adds a small amount of fuel to all cylinders. If knocking occurs when the MAP is over 140 kPa the knocking is regulated by switching both fuel injection matrix and ignition advance matrix. If this is not sufficient the charging pressure is lowered. This purpose of this procedure is to maintain good performance. If the signal between the ignition cassette and the ECU is lost, the charging pressure is lowered to basic charging pressure and the ignition timing advance is lowered 12° when it exist a risk of knocking due to engine load.


Combustion signals

The Trionic system lacks a camshaft position sensor. This sensor is normally a prerequisite for a sequential pre ignition/pinging regulation and fuel injection. Saab Trionic must decide whether cylinder one or cylinder four ignites when the crank shaft position sensor indicates that cylinder one and four is at TDC. This is done by help of ionization current. One of the poles of the secondary coil of the spark coils is connected to the spark plugs in an ordinary manner. The other pole isn’t grounded directly but connected to an 80 V voltage. This means that an 80 V voltage is applied across the spark gap of the spark plugs, except when the spark is fired. When combustion has occurred the temperature in the combustion chamber is very high. The gases are formed as ions and start to conduct electric current. This results in a current flowing in the spark plug gap (without resulting in a spark). The ionisation current is measured in pairs, cylinder one and two is one pair and cylinder three and four in the other pair. If combustion occurs in cylinder one or two the ignition cassette sends battery voltage (B+) pulse to the ECU, pin 17. If the combustion takes place in cylinder three or four the B+ pulse is fed to pin 18 in ECU. If the crankshaft position sensor indicates that cylinders one and four are at TDC and a B+ pulse enters the ECU via pin 17 simultaneously, then the ECU know that it is cylinder one that has ignited. Upon starting, the ECU doesn’t know which cylinder is in compression phase, hence ignition is initiated in both cylinders one and four and 180 crank shaft degrees later sparks in cylinder two and three are fired. As soon as the combustion signals enters the ECU via pin 17 and pin 18 the ignition and fuel injection is synchronised to the engines firing order. The combustion signals are also used to detect misfires.


Heat plates

Heat plates are used to lower the warm up emissions. They vaporize the injected fuel before it is drawn/forced into the cylinders and consequently reduce the need for added fuel in the A/F mixture in the warm up phase thus reducing the emissions. At engine start and coolant temperature lower than +85°C Pin 29 on ECU is grounded and a relay in the engine compartment are activated and closes the electrical circuit for the Heat Plates. The circuit is protected by a 40 A MAXI fuse. When the coolant temperature is warmer than +85°C or four minutes has passed the Heat Plates are switched off. To compensate for the increased air resistance in the intake, engines fitted with Heat Plates have a slightly adjusted charge pressure, Approximately: +0.2 bar, this means that LPT models with heat plates have a solenoid valve to raise the charging pressure above basic charging pressure. In case of a Heat Plate-failure the car may have drivability problems due condensed fuel in the intake during cold engine operations. This condensed fuel is compensated in engines without Heat Plates by enriching the A/F mixture. The heat plates are activated by software, which enables different algorithms to use the plates and to compensate for the intake restriction caused by the plates' presence.


Other features


Shift Up lamp

The Shift Up lamp can be found on OBD II cars. The lamp helps the driver to drive economically. The lamp is supplied by ignition power (+15) and is grounded in the Trionic ECU, pin 55. The Shift Up Lamp is lit when the ignition is turned on for three seconds to test the circuit. During normal driving the lamp is lit when reaching a specific RPM while driving at light loads. At wide-open-throttle the Shift Up lamp is lit when the RPM is near 6000 RPM. The lamp does not light in fifth gear. The light is lit at a higher RPM when the engine is cold to promote a quicker warm up.


See also

*
Trionic T5.2 The Trionic T5.2, an advanced engine management system in the Trionic series, was introduced in Saab 9000 year 1993 and was discontinued the same year. This engine management system was used on the "long block" engines. It was superseded by the T ...
*
Trionic 8 The Trionic 8 is an advanced engine management system in the Trionic series, created by Saab Automobile. It is used in both Saab 9-3 and Opel Vectra vehicles, and is available with 150, 175 and engines. It will also be used for a flexifuel versio ...


References


External links


Trionic Suites reflashing (editing) software

Trionic 5 technical information document
Saab Trionic Engine control systems Automotive technology tradenames