In
descriptive set theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to oth ...
, a tree on a set
is a collection of
finite sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called th ...
s of elements of
such that every
prefix
A prefix is an affix which is placed before the stem of a word. Adding it to the beginning of one word changes it into another word. For example, when the prefix ''un-'' is added to the word ''happy'', it creates the word ''unhappy''. Particu ...
of a sequence in the collection also belongs to the collection.
Definitions
Trees
The collection of all finite sequences of elements of a set
is denoted
.
With this notation, a tree is a nonempty subset
of
, such that if
is a sequence of length
in
, and if