Titanium in zircon geothermometry is a form of a
geothermometry technique by which the
crystallization
Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely de ...
temperature of a
zircon
Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of th ...
crystal can be estimated by the amount of
titanium
Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
atoms which can only be found in the
crystal lattice
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
: \mathbf = n_1 \mathbf_1 + n_2 \mathbf_2 + n ...
. In zircon crystals, titanium is commonly incorporated, replacing similarly charged
zirconium
Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
and
silicon
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
atoms. This process is relatively unaffected by pressure and highly temperature dependent, with the amount of titanium incorporated rising exponentially with temperature,
making this an accurate geothermometry method. This measurement of titanium in zircons can be used to estimate the cooling temperatures of the crystal and infer conditions during which it crystallized. Compositional changes in the crystals growth rings can be used to estimate the thermodynamic history of the entire crystal. This method is useful as it can be combined with
radiometric dating
Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares t ...
techniques that are commonly used with zircon crystals (see
zircon geochronology
Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of the ...
), to correlate quantitative temperature measurements with specific absolute ages. This technique can be used to estimate early Earth conditions, determine
metamorphic facies
A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures.Essentials of Geology, 3rd Edition, Stephen Marshak The assemblage is typical of what is formed in conditions corresponding ...
, or to determine the source of
detrital
Detritus (; adj. ''detrital'' ) is particles of rock derived from pre-existing rock through weathering and erosion.Essentials of Geology, 3rd Ed, Stephen Marshak, p G-7 A fragment of detritus is called a clast.Essentials of Geology, 3rd Ed, Steph ...
zircons, among other uses.
Zircon
Zircon ((Zr
1–y,
REEy)(SiO
4)
1–x(OH)
4x–y)) is an
orthosilicate
In chemistry, orthosilicate is the anion , or any of its salts and esters. It is one of the silicate anions. It is occasionally called the silicon tetroxide anion or group.C. A. Kumins, and A. E. Gessler (1953), "Short-Cycle Syntheses of Ultra ...
mineral that is commonly found as an accessory mineral throughout Earth's crust.
Due to its crystal structure and geochemistry, zircon is a commonly analyzed mineral because of its utility for geologists as a geochronometer and geothermometer.
Chemically, zircon is a particularly useful mineral because of its ability to incorporate many trace elements. Many of these elements can be used for radiometric dating to provide an age for the crystal. It is known to exchange
uranium
Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly ...
,
thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
and
rare earth elements
The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
(REE) such as
yttrium
Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in c ...
,
and
lutetium
Lutetium is a chemical element with the symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted am ...
. However, the chemical potential energies of these REE substitutions are not well understood, so they are not suitable for determining crystallization temperatures. Titanium is also incorporated into zircon, and its exchange rates has been studied in detail. Ti
4+, a tetravalent ion, can replace Zr
4+ or Si
4+ in a temperature dependent mechanism. For zircons in the presence of TiO
2, i.e. the mineral
rutile
Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite.
Rutile has one of the highest refractive indices at visible wa ...
, this substitution process is common and can be measured.
Zircon is also useful because its incorporation of other elements like uranium, lutetium,
samarium
Samarium is a chemical element with symbol Sm and atomic number 62. It is a moderately hard silvery metal that slowly oxidizes in air. Being a typical member of the lanthanide series, samarium usually has the oxidation state +3. Compounds of samar ...
,
and
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as we ...
can be analyzed to provide further insight into the age and conditions the crystal grew under.
Thermally, zircon is resistant to temperature changes and extremes. It is stable up to 1690 °C at ambient pressure and has a low thermal expansion rate. Zircon crystals are also some of the most incompressible silicate minerals.
The high durability of zircons also allows them to crystallize around other silicate minerals, creating pockets, or
inclusions, of surrounding melts that are indicative of magma at specific pressures and temperatures. This essentially forms a time-capsule giving a glimpse of past conditions in which the crystal formed.
Zircons are known to be relatively retentive of their incorporated isotopes and thus very useful for microquantitative studies. Cations such as REE,
U, Th, Hf,
Pb,
and Ti
diffuse slowly out of zircons, and their measured quantities in the mineral are diagnostic of the melt conditions surrounding the crystal during growth. This slow rate of diffusion of many of the incorporated elements makes zircon crystals more likely to form compositional zoning, which may represent oscillatory zoning or sector zoning, as the melt composition or energy conditions change around the crystal over time.
These zones show compositional differences between the core and rim of the crystal, providing observable evidence of changes in melt conditions.
Slow diffusion rates also prevent contamination by leaking or loss of isotopes from the crystal, increasing the likelihood that chronologic and compositional measurements are accurate.
Methods

This section will review the process of measuring the titanium content of zircons, beginning with sample collection, mineral separation, mounting for microprobe analysis, and ending with the microquantitative element analysis. Once a rock has been collected, zircons are extracted using a series of techniques such as using a
sieve
A sieve, fine mesh strainer, or sift, is a device for separation process, separating wanted elements from unwanted material or for controlling the particle size distribution of a sample, using a screen such as a warp and weft, woven mesh or n ...
,
heavy liquid, shaking table, and
magnetic separation
Magnetic separation is the process of separating components of mixtures by using a magnet to attract magnetic substances. The process that is used for magnetic separation separates non-magnetic substances from those which are magnetic. This techniq ...
to separate minerals based on differing densities and properties. Zircon crystals are then mounted to an epoxy or metal disc-shaped slide,
where they can be shaved to about half thickness to reveal their internal structure. From here, they can be imaged using
cathodoluminescence
Cathodoluminescence is an optical and electromagnetic phenomenon in which electrons impacting on a luminescent material such as a phosphor, cause the emission of photons which may have wavelengths in the visible spectrum. A familiar example is th ...
to make any zonations in the mineral visible. If zonation is apparent, multiple measurements of Ti abundance can be taken from the center to the rim to give the temperature evolution of the crystal.
The final step involves measuring the abundance of titanium in a specific location on a zircon crystal with an ion microprobe. For this, the chemical compositions of the zircons is measure using
secondary ion mass spectrometry
Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions ...
. The sample is bombarded with a beam of primary ions, and the charge and mass of the ejected secondary ions are measured to determine the chemical composition at the point of contact. The quantitative value for titanium content is then compared to a known relationship of titanium incorporation and temperature to determine the crystallization temperature of that zone of the zircon. The titanium-to-temperature relationship was calculated using in situ radiometrically dated zircons with known melt temperatures from the surrounding rock. This titanium-in-zircon measurement can be done several times in zoned zircons, which may record the temperature evolution that resulted from many geologic events.
Uses
Using this technique, the crystallization temperatures of zircons can be estimated to estimate the cooling temperature of the crystal. Geothermometry techniques like this can provide evidence for changes in temperature in various environments, the
thermodynamic
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of t ...
evolution of rocks, the gradual change in the
geothermal gradient
Geothermal gradient is the rate of temperature change with respect to increasing depth in Earth's interior. As a general rule, the crust temperature rises with depth due to the heat flow from the much hotter mantle; away from tectonic plate bo ...
over
geologic time
The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geoc ...
, and determine
provenance
Provenance (from the French ''provenir'', 'to come from/forth') is the chronology of the ownership, custody or location of a historical object. The term was originally mostly used in relation to works of art but is now used in similar senses i ...
of
detrital
Detritus (; adj. ''detrital'' ) is particles of rock derived from pre-existing rock through weathering and erosion.Essentials of Geology, 3rd Ed, Stephen Marshak, p G-7 A fragment of detritus is called a clast.Essentials of Geology, 3rd Ed, Steph ...
sediments. Coupled with geochronology techniques that measure using radiometric decay to age date a rock, such as with U/Pb decay, these paleotemperature measurements can be paired with an absolute age in order to determine temperature changes over time.
Titanium in zircon geothermometry has so far been used in
igneous
Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma o ...
rocks to estimate cooling temperatures of
magma
Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natura ...
from zircon crystals dated to the
Hadean
The Hadean ( ) is a geologic eon of Earth history preceding the Archean. On Earth, the Hadean began with the planet's formation about 4.54 billion years ago (although the start of the Hadean is defined as the age of the oldest solid material ...
age (>4.0 Ga). Low crystallization temperatures from zircons of this age suggests the Hadean Earth contained liquid water, which reduced the cooling temperature of crustal materials.
Potentially, titanium-in-zircon thermometry of Earth's oldest zircons can show the progressive heat loss from a magmatic Hadean Earth to the onset of
plate tectonics
Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large t ...
as the planet's crust began to cool and underwent plastic deformation. This will provide previously unknown evidence for the conditions in early Earth and allow testing of ideas of how the planet evolved through the Hadean and
Archean
The Archean Eon ( , also spelled Archaean or Archæan) is the second of four eon (geology), geologic eons of History of Earth, Earth's history, representing the time from . The Archean was preceded by the Hadean Eon and followed by the Proterozo ...
eons.
Titanium-in-zircon geothermometry can be used in zircons found in
metamorphic rock
Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock ( protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, cau ...
s to estimate the pressure and temperatures conditions during metamorphism. This helps identify the
metamorphic facies
A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures.Essentials of Geology, 3rd Edition, Stephen Marshak The assemblage is typical of what is formed in conditions corresponding ...
and thus the geologic setting of a rock formation.
It can also be used in
sedimentary rock
Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particle ...
s to help determine the source of detrital minerals. However, these crystals may sometimes be contaminated by external titanium seeping into fractures.
Errors and limitations
Titanium-in-zircon geothermometry is considered to be a relatively reliable and accurate method of determining crystallization temperatures of zircons, with an error of only 10-16 degrees Celsius.
However, there are several limitations and assumptions used in this technique that increase the margin of error.
The major constraint of this technique is that it is only usable in systems that contain titanium, or the mineral
rutile
Rutile is an oxide mineral composed of titanium dioxide (TiO2), the most common natural form of TiO2. Rarer polymorphs of TiO2 are known, including anatase, akaogiite, and brookite.
Rutile has one of the highest refractive indices at visible wa ...
(TiO
2). In systems that have no or very little titanium, this method is pointless, as zircons will not incorporate titanium if it is not present in the magmatic melt.
However, recent models have taken into account zircon's ability to replace either silicon or zirconium in the crystal with titanium by using independent activities of silicon and zircon.
This has expanded the potential uses for zircons with unknown origins, due to the abundance of silicon in Earth's crust. In some zircon crystals, inclusions of the mineral
quartz
Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical ...
(SiO
2) can be used as proof that silicon was present during crystallization, thus validating the use of this geothermometer.
Due to the abundance of radioactive elements that can be incorporated into zircons, they are also susceptible to damage from radioactive decay through the process of
metamictization. As radioactive elements within the crystal lattice decay, they bombard the interior of the crystal with radioactive particles. This weakens the crystal and leave it fractured or destroyed.
This increases the chance of isotopes leaking out of the crystal and affecting titanium, or other elements, measurements.
Another difficulty with this microanalysis is the contamination of titanium on external surfaces. Recent studies have expressed concern over the
gold
Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
coating on the surface of the
ion microprobe A microprobe is an instrument that applies a stable and well-focused beam of charged particles (electrons or ions) to a sample.
Types
When the primary beam consists of accelerated electrons, the probe is termed an electron microprobe, when the pr ...
mounts, which contains small amounts of titanium (~1 ppm) that could provide an error during measurement. In detrital zircons found in sedimentary sources, a titanium-bearing oxide coating on the surface and in fractures of zircons can also contaminate the crystal with excess titanium.
More recent studies have also shown that there are additional unknown factors that contribute to Ti incorporation in zircons. The chemical activity of SiO
2, pressure variance, disequilibrium crystallization from melts, late crystal growth in hydrous melts, or non-
Henry's Law
In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formul ...
substitution in zircon crystals all may play a role in altering predicted crystallization temperatures.
This technique is also constrained by several assumptions that, while valid, may prove inconsistent in certain situations. Laboratory studies have used constant pressures when calculating cooling temperatures and have assumed that pressure does not play a major role in titanium incorporation. When estimating cooling temperatures, increased pressure is accounted for by increased temperature estimates and thus increases the uncertainty of the estimates.
References
{{reflist, 30em
Geological techniques
Titanium
Zircon