Tidal Current
   HOME

TheInfoList



OR:

Tides are the rise and fall of
sea level Mean sea level (MSL, often shortened to sea level) is an mean, average surface level of one or more among Earth's coastal Body of water, bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical ...
s caused by the combined effects of the gravitational forces exerted by the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
(and to a much lesser extent, the Sun) and are also caused by the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
and
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
orbiting one another. Tide tables can be used for any given locale to find the predicted times and amplitude (or " tidal range"). The predictions are influenced by many factors including the alignment of the Sun and Moon, the phase and amplitude of the tide (pattern of tides in the deep ocean), the amphidromic systems of the oceans, and the shape of the
coast A coast (coastline, shoreline, seashore) is the land next to the sea or the line that forms the boundary between the land and the ocean or a lake. Coasts are influenced by the topography of the surrounding landscape and by aquatic erosion, su ...
line and near-shore bathymetry (see '' Timing''). They are however only predictions, the actual time and height of the tide is affected by wind and
atmospheric pressure Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1,013. ...
. Many shorelines experience semi-diurnal tides—two nearly equal high and low tides each day. Other locations have a diurnal tide—one high and low tide each day. A "mixed tide"—two uneven magnitude tides a day—is a third regular category. Tides vary on timescales ranging from hours to years due to a number of factors, which determine the lunitidal interval. To make accurate records, tide gauges at fixed stations measure water level over time. Gauges ignore variations caused by waves with periods shorter than minutes. These data are compared to the reference (or datum) level usually called mean sea level. While tides are usually the largest source of short-term sea-level fluctuations, sea levels are also subject to change from thermal expansion, wind, and barometric pressure changes, resulting in storm surges, especially in shallow seas and near coasts. Tidal phenomena are not limited to the oceans, but can occur in other systems whenever a gravitational field that varies in time and space is present. For example, the shape of the solid part of the Earth is affected slightly by Earth tide, though this is not as easily seen as the water tidal movements.


Characteristics

Four stages in the tidal cycle are named: * The water stops falling, reaching a local minimum called low tide. * Sea level rises over several hours, covering the intertidal zone; flood tide. * The water stops rising, reaching a local maximum called high tide. * Sea level falls over several hours, revealing the intertidal zone; ebb tide. Oscillating currents produced by tides are known as tidal streams or tidal currents. The moment that the tidal current ceases is called '' slack water'' or ''slack tide''. The tide then reverses direction and is said to be turning. Slack water usually occurs near high water and low water, but there are locations where the moments of slack tide differ significantly from those of high and low water. Tides are commonly ''semi-diurnal'' (two high waters and two low waters each day), or ''diurnal'' (one tidal cycle per day). The two high waters on a given day are typically not the same height (the daily inequality); these are the ''higher high water'' and the ''lower high water'' in tide tables. Similarly, the two low waters each day are the ''higher low water'' and the ''lower low water''. The daily inequality is not consistent and is generally small when the Moon is over the
Equator The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
.


Reference levels

The following reference tide levels can be defined, from the highest level to the lowest: * '' Highest astronomical tide'' (HAT) – The highest tide which can be predicted to occur. Note that meteorological conditions may add extra height to the HAT. * '' Mean high water springs'' (MHWS) – The average of the two high tides on the days of spring tides. * ''Mean high water neaps'' (MHWN) – The average of the two high tides on the days of neap tides. * '' Mean sea level'' (MSL) – This is the average sea level. The MSL is constant for any location over a long period. * ''Mean low water neaps'' (MLWN) – The average of the two low tides on the days of neap tides. * '' Mean low water springs'' (MLWS) – The average of the two low tides on the days of spring tides. * '' Lowest astronomical tide'' (LAT) – The lowest tide which can be predicted to occur.


Range variation: springs and neaps

The semi-diurnal range (the difference in height between high and low waters over about half a day) varies in a two-week cycle. Approximately twice a month, around new moon and full moon when the Sun, Moon, and Earth form a line (a configuration known as a syzygy), the tidal force due to the Sun reinforces that due to the Moon. The tide's range is then at its maximum; this is called the spring tide. It is not named after the season, but, like that word, derives from the meaning "jump, burst forth, rise", as in a natural spring. Spring tides are sometimes referred to as ''syzygy tides''. When the Moon is at first quarter or third quarter, the Sun and Moon are separated by 90° when viewed from the Earth (in quadrature), and the solar tidal force partially cancels the Moon's tidal force. At these points in the lunar cycle, the tide's range is at its minimum; this is called the neap tide, or neaps. "Neap" is an Anglo-Saxon word meaning "without the power", as in ''forðganges nip'' (forth-going without-the-power). Neap tides are sometimes referred to as ''quadrature tides''. Spring tides result in high waters that are higher than average, low waters that are lower than average, " slack water" time that is shorter than average, and stronger tidal currents than average. Neaps result in less extreme tidal conditions. There is about a seven-day interval between springs and neaps. File:High tide sun moon same side beginning.png, ''Spring tide:'' Sun and Moon on the same side (0°) File:Low tide sun moon 90 degrees.png, ''Neap tide:'' Sun and Moon at 90° File:High tide sun moon opposite side.png, ''Spring tide:'' Sun and Moon at opposite sides (180°) File:Low tide sun moon 270 degrees.png, ''Neap tide:'' Sun and Moon at 270° File:High tide sun moon same side end.png, ''Spring tide:'' Sun and Moon at the same side (cycle restarts)


Tidal constituents

''Tidal constituents'' are the net result of multiple influences impacting tidal changes over certain periods of time. Primary constituents include the Earth's rotation, the position of the Moon and Sun relative to the Earth, the Moon's altitude (elevation) above the Earth's Equator, and bathymetry. Variations with periods of less than half a day are called ''harmonic constituents''. Conversely, cycles of days, months, or years are referred to as ''long period'' constituents. Tidal forces affect the entire earth, but the movement of solid Earth occurs by mere centimeters. In contrast, the atmosphere is much more fluid and compressible so its surface moves by kilometers, in the sense of the contour level of a particular low pressure in the outer atmosphere.


Principal lunar semi-diurnal constituent

In most locations, the largest constituent is the ''principal lunar semi-diurnal'', also known as the ''M2 tidal constituent'' or ''M2 tidal constituent''. Its period is about 12 hours and 25.2 minutes, exactly half a ''tidal lunar day'', which is the average time separating one lunar
zenith The zenith (, ) is the imaginary point on the celestial sphere directly "above" a particular location. "Above" means in the vertical direction (Vertical and horizontal, plumb line) opposite to the gravity direction at that location (nadir). The z ...
from the next, and thus is the time required for the Earth to rotate once relative to the Moon. Simple tide clocks track this constituent. The lunar day is longer than the Earth day because the Moon orbits in the same direction the Earth spins. The Moon orbits the Earth in the same direction as the Earth rotates on its axis, so it takes slightly more than a day—about 24 hours and 50 minutes—for the Moon to return to the same location in the sky. During this time, it has passed overhead ( culmination) once and underfoot once (at an hour angle of 00:00 and 12:00 respectively), so in many places the period of strongest tidal forcing is the above-mentioned, about 12 hours and 25 minutes. The moment of highest tide is not necessarily when the Moon is nearest to
zenith The zenith (, ) is the imaginary point on the celestial sphere directly "above" a particular location. "Above" means in the vertical direction (Vertical and horizontal, plumb line) opposite to the gravity direction at that location (nadir). The z ...
or nadir, but the period of the forcing still determines the time between high tides. Because the gravitational field created by the Moon weakens with distance from the Moon, it exerts a slightly stronger than average force on the side of the Earth facing the Moon, and a slightly weaker force on the opposite side. The Moon thus tends to "stretch" the Earth slightly along the line connecting the two bodies. The solid Earth deforms a bit, but ocean water, being fluid, is free to move much more in response to the tidal force, particularly horizontally (see equilibrium tide). As the Earth rotates, the magnitude and direction of the tidal force at any particular point on the Earth's surface change constantly; although the ocean never reaches equilibrium—there is never time for the fluid to "catch up" to the state it would eventually reach if the tidal force were constant—the changing tidal force nonetheless causes rhythmic changes in sea surface height. When there are two high tides each day with different heights (and two low tides also of different heights), the pattern is called a ''mixed semi-diurnal tide''.


Lunar distance

The changing distance separating the Moon and Earth also affects tide heights. When the Moon is closest, at perigee, the range increases, and when it is at apogee, the range shrinks. Six or eight times a year perigee coincides with either a new or full moon causing perigean spring tides with the largest '' tidal range''. The difference between the height of a tide at perigean spring tide and the spring tide when the moon is at apogee depends on location but can be large as a foot higher.


Other constituents

These include solar gravitational effects, the obliquity (tilt) of the Earth's Equator and rotational axis, the inclination of the plane of the lunar orbit and the elliptical shape of the Earth's orbit of the Sun. A compound tide (or overtide) results from the shallow-water interaction of its two parent waves.


Phase and amplitude

Because the ''M''2 tidal constituent dominates in most locations, the stage or ''phase'' of a tide, denoted by the time in hours after high water, is a useful concept. Tidal stage is also measured in degrees, with 360° per tidal cycle. Lines of constant tidal phase are called '' cotidal lines'', which are analogous to contour lines of constant altitude on topographical maps, and when plotted form a ''cotidal map'' or ''cotidal chart''. High water is reached simultaneously along the cotidal lines extending from the coast out into the ocean, and cotidal lines (and hence tidal phases) advance along the coast. Semi-diurnal and long phase constituents are measured from high water, diurnal from maximum flood tide. This and the discussion that follows is precisely true only for a single tidal constituent. For an ocean in the shape of a circular basin enclosed by a coastline, the cotidal lines point radially inward and must eventually meet at a common point, the amphidromic point. The amphidromic point is at once cotidal with high and low waters, which is satisfied by ''zero'' tidal motion. (The rare exception occurs when the tide encircles an island, as it does around New Zealand,
Iceland Iceland is a Nordic countries, Nordic island country between the Atlantic Ocean, North Atlantic and Arctic Oceans, on the Mid-Atlantic Ridge between North America and Europe. It is culturally and politically linked with Europe and is the regi ...
and
Madagascar Madagascar, officially the Republic of Madagascar, is an island country that includes the island of Madagascar and numerous smaller peripheral islands. Lying off the southeastern coast of Africa, it is the world's List of islands by area, f ...
.) Tidal motion generally lessens moving away from continental coasts, so that crossing the cotidal lines are contours of constant ''amplitude'' (half the distance between high and low water) which decrease to zero at the amphidromic point. For a semi-diurnal tide the amphidromic point can be thought of roughly like the center of a clock face, with the hour hand pointing in the direction of the high water cotidal line, which is directly opposite the low water cotidal line. High water rotates about the amphidromic point once every 12 hours in the direction of rising cotidal lines, and away from ebbing cotidal lines. This rotation, caused by the Coriolis effect, is generally clockwise in the southern hemisphere and counterclockwise in the northern hemisphere. The difference of cotidal phase from the phase of a reference tide is the ''epoch''. The reference tide is the hypothetical constituent "equilibrium tide" on a landless Earth measured at 0° longitude, the Greenwich meridian. In the North Atlantic, because the cotidal lines circulate counterclockwise around the amphidromic point, the high tide passes New York Harbor approximately an hour ahead of Norfolk Harbor. South of Cape Hatteras the tidal forces are more complex, and cannot be predicted reliably based on the North Atlantic cotidal lines.


History


History of tidal theory

Investigation into tidal physics was important in the early development of
celestial mechanics Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
, with the existence of two daily tides being explained by the Moon's gravity. Later the daily tides were explained more precisely by the interaction of the Moon's and the Sun's gravity. Seleucus of Seleucia theorized around 150 BC that tides were caused by the Moon. The influence of the Moon on bodies of water was also mentioned in
Ptolemy Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
's '' Tetrabiblos''. In (''
The Reckoning of Time ''The Reckoning of Time'' (, CPL 2320) is an English era treatise written in Medieval Latin by the Northumbrian monk Bede in 725. Background In mid-7th-century Anglo-Saxon England, there was a desire to see the Easter season less closel ...
'') of 725
Bede Bede (; ; 672/326 May 735), also known as Saint Bede, Bede of Jarrow, the Venerable Bede, and Bede the Venerable (), was an English monk, author and scholar. He was one of the most known writers during the Early Middle Ages, and his most f ...
linked semidurnal tides and the phenomenon of varying tidal heights to the Moon and its phases. Bede starts by noting that the tides rise and fall 4/5 of an hour later each day, just as the Moon rises and sets 4/5 of an hour later. He goes on to emphasise that in two lunar months (59 days) the Moon circles the Earth 57 times and there are 114 tides. Bede then observes that the height of tides varies over the month. Increasing tides are called ''malinae'' and decreasing tides ''ledones'' and that the month is divided into four parts of seven or eight days with alternating ''malinae'' and ''ledones''. In the same passage he also notes the effect of winds to hold back tides. Bede also records that the time of tides varies from place to place. To the north of Bede's location ( Monkwearmouth) the tides are earlier, to the south later. He explains that the tide "deserts these shores in order to be able all the more to be able to flood other horeswhen it arrives there" noting that "the Moon which signals the rise of tide here, signals its retreat in other regions far from this quarter of the heavens". Later medieval understanding of the tides was primarily based on works of Muslim astronomers, which became available through Latin translation starting from the 12th century. Abu Ma'shar al-Balkhi (d. circa 886), in his , taught that ebb and flood tides were caused by the Moon. Abu Ma'shar discussed the effects of wind and Moon's phases relative to the Sun on the tides. In the 12th century, al-Bitruji (d. circa 1204) contributed the notion that the tides were caused by the general circulation of the heavens. Simon Stevin, in his 1608 (''The theory of ebb and flood''), dismissed a large number of misconceptions that still existed about ebb and flood. Stevin pleaded for the idea that the attraction of the Moon was responsible for the tides and spoke in clear terms about ebb, flood, spring tide and neap tide, stressing that further research needed to be made. In 1609 Johannes Kepler also correctly suggested that the gravitation of the Moon caused the tides, which he based upon ancient observations and correlations.
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
in his 1632 '' Dialogue Concerning the Two Chief World Systems'', whose working title was ''Dialogue on the Tides'', gave an explanation of the tides. The resulting theory, however, was incorrect as he attributed the tides to the sloshing of water caused by the Earth's movement around the Sun. He hoped to provide mechanical proof of the Earth's movement. The value of his tidal theory is disputed. Galileo rejected Kepler's explanation of the tides.
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
(1642–1727) was the first person to explain tides as the product of the gravitational attraction of astronomical masses. His explanation of the tides (and many other phenomena) was published in the '' Principia'' (1687) and used his theory of universal gravitation to explain the lunar and solar attractions as the origin of the tide-generating forces. Newton and others before Pierre-Simon Laplace worked the problem from the perspective of a static system (equilibrium theory), that provided an approximation that described the tides that would occur in a non-inertial ocean evenly covering the whole Earth. The tide-generating force (or its corresponding potential) is still relevant to tidal theory, but as an intermediate quantity (forcing function) rather than as a final result; theory must also consider the Earth's accumulated dynamic tidal response to the applied forces, which response is influenced by ocean depth, the Earth's rotation, and other factors. In 1740, the Académie Royale des Sciences in Paris offered a prize for the best theoretical essay on tides. Daniel Bernoulli,
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
, Colin Maclaurin and Antoine Cavalleri shared the prize. Maclaurin used Newton's theory to show that a smooth sphere covered by a sufficiently deep ocean under the tidal force of a single deforming body is a prolate spheroid (essentially a three-dimensional oval) with major axis directed toward the deforming body. Maclaurin was the first to write about the Earth's rotational effects on motion. Euler realized that the tidal force's ''horizontal'' component (more than the vertical) drives the tide. In 1744 Jean le Rond d'Alembert studied tidal equations for the atmosphere which did not include rotation. In 1770
James Cook Captain (Royal Navy), Captain James Cook (7 November 1728 – 14 February 1779) was a British Royal Navy officer, explorer, and cartographer famous for his three voyages of exploration to the Pacific and Southern Oceans, conducted between 176 ...
's
barque A barque, barc, or bark is a type of sailing ship, sailing vessel with three or more mast (sailing), masts of which the fore mast, mainmast, and any additional masts are Square rig, rigged square, and only the aftmost mast (mizzen in three-maste ...
HMS ''Endeavour'' grounded on the
Great Barrier Reef The Great Barrier Reef is the world's largest coral reef system, composed of over 2,900 individual reefs and 900 islands stretching for over over an area of approximately . The reef is located in the Coral Sea, off the coast of Queensland, ...
. Attempts were made to refloat her on the following tide which failed, but the tide after that lifted her clear with ease. Whilst she was being repaired in the mouth of the Endeavour River Cook observed the tides over a period of seven weeks. At neap tides both tides in a day were similar, but at springs the tides rose in the morning but in the evening. Pierre-Simon Laplace formulated a system of
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
s relating the ocean's horizontal flow to its surface height, the first major dynamic theory for water tides. The Laplace tidal equations are still in use today. William Thomson, 1st Baron Kelvin, rewrote Laplace's equations in terms of vorticity which allowed for solutions describing tidally driven coastally trapped waves, known as Kelvin waves. Others including Kelvin and
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
further developed Laplace's theory. Based on these developments and the lunar theory of E W Brown describing the motions of the Moon, Arthur Thomas Doodson developed and published in 1921 the first modern development of the tide-generating potential in harmonic form: Doodson distinguished 388 tidal frequencies. Some of his methods remain in use.


History of tidal observation

From ancient times, tidal observation and discussion has increased in sophistication, first marking the daily recurrence, then tides' relationship to the Sun and moon. Pytheas travelled to the
British Isles The British Isles are an archipelago in the Atlantic Ocean, North Atlantic Ocean off the north-western coast of continental Europe, consisting of the islands of Great Britain, Ireland, the Isle of Man, the Inner Hebrides, Inner and Outer Hebr ...
about 325 BC and seems to be the first to have related spring tides to the phase of the moon. In the 2nd century BC, the Hellenistic astronomer Seleucus of Seleucia correctly described the phenomenon of tides in order to support his heliocentric theory. He correctly theorized that tides were caused by the
moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
, although he believed that the interaction was mediated by the pneuma. He noted that tides varied in time and strength in different parts of the world. According to
Strabo Strabo''Strabo'' (meaning "squinty", as in strabismus) was a term employed by the Romans for anyone whose eyes were distorted or deformed. The father of Pompey was called "Gnaeus Pompeius Strabo, Pompeius Strabo". A native of Sicily so clear-si ...
(1.1.9), Seleucus was the first to link tides to the lunar attraction, and that the height of the tides depends on the moon's position relative to the Sun. The ''Naturalis Historia'' of
Pliny the Elder Gaius Plinius Secundus (AD 23/24 79), known in English as Pliny the Elder ( ), was a Roman Empire, Roman author, Natural history, naturalist, and naval and army commander of the early Roman Empire, and a friend of the Roman emperor, emperor Vesp ...
collates many tidal observations, e.g., the spring tides are a few days after (or before) new and full moon and are highest around the equinoxes, though Pliny noted many relationships now regarded as fanciful. In his ''Geography'', Strabo described tides in the
Persian Gulf The Persian Gulf, sometimes called the Arabian Gulf, is a Mediterranean seas, mediterranean sea in West Asia. The body of water is an extension of the Arabian Sea and the larger Indian Ocean located between Iran and the Arabian Peninsula.Un ...
having their greatest range when the moon was furthest from the plane of the Equator. All this despite the relatively small amplitude of
Mediterranean The Mediterranean Sea ( ) is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean basin and almost completely enclosed by land: on the east by the Levant in West Asia, on the north by Anatolia in West Asia and Southern ...
basin tides. (The strong currents through the Euripus Strait and the Strait of Messina puzzled
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
.) Philostratus discussed tides in Book Five of ''The Life of Apollonius of Tyana''. Philostratus mentions the moon, but attributes tides to "spirits". In Europe around 730 AD, the Venerable
Bede Bede (; ; 672/326 May 735), also known as Saint Bede, Bede of Jarrow, the Venerable Bede, and Bede the Venerable (), was an English monk, author and scholar. He was one of the most known writers during the Early Middle Ages, and his most f ...
described how the rising tide on one coast of the British Isles coincided with the fall on the other and described the time progression of high water along the Northumbrian coast. The first tide table in
China China, officially the People's Republic of China (PRC), is a country in East Asia. With population of China, a population exceeding 1.4 billion, it is the list of countries by population (United Nations), second-most populous country after ...
was recorded in 1056 AD primarily for visitors wishing to see the famous tidal bore in the Qiantang River. The first known British tide table is thought to be that of John Wallingford, who died Abbot of St. Albans in 1213, based on high water occurring 48 minutes later each day, and three hours earlier at the Thames mouth than upriver at
London London is the Capital city, capital and List of urban areas in the United Kingdom, largest city of both England and the United Kingdom, with a population of in . London metropolitan area, Its wider metropolitan area is the largest in Wester ...
. In 1614
Claude d'Abbeville Claude d'Abbeville was a 17th-century French Franciscan friar who worked as a missionary with the Tupinambá people, Tupinambá in Maranhão, modern Brazil. He was part of a colonizing party and a mission of four Franciscans sent under a 1611 pat ...
published the work "", where he exposed that the Tupinambá people already had an understanding of the relation between the Moon and the tides before Europe. William Thomson (Lord Kelvin) led the first systematic harmonic analysis of tidal records starting in 1867. The main result was the building of a tide-predicting machine using a system of pulleys to add together six harmonic time functions. It was "programmed" by resetting gears and chains to adjust phasing and amplitudes. Similar machines were used until the 1960s. The first known sea-level record of an entire spring–neap cycle was made in 1831 on the Navy Dock in the Thames Estuary. Many large ports had automatic tide gauge stations by 1850. John Lubbock was one of the first to map co-tidal lines, for Great Britain, Ireland and adjacent coasts, in 1840.
William Whewell William Whewell ( ; 24 May 17946 March 1866) was an English polymath. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved distinction in both poetry and mathematics. The breadth of Whewell's endeavours is ...
expanded this work ending with a nearly global chart in 1836. In order to make these maps consistent, he hypothesized the existence of a region with no tidal rise or fall where co-tidal lines meet in the mid-ocean. The existence of such an amphidromic point, as they are now known, was confirmed in 1840 by Captain William Hewett, RN, from careful soundings in the
North Sea The North Sea lies between Great Britain, Denmark, Norway, Germany, the Netherlands, Belgium, and France. A sea on the European continental shelf, it connects to the Atlantic Ocean through the English Channel in the south and the Norwegian Se ...
. Much later, in the late 20th century, geologists noticed tidal rhythmites, which document the occurrence of ancient tides in the geological record, notably in the
Carboniferous The Carboniferous ( ) is a Geologic time scale, geologic period and System (stratigraphy), system of the Paleozoic era (geology), era that spans 60 million years, from the end of the Devonian Period Ma (million years ago) to the beginning of the ...
.


Physics


Forces

The tidal force produced by a massive object (Moon, hereafter) on a small particle located on or in an extensive body (Earth, hereafter) is the vector difference between the gravitational force exerted by the Moon on the particle, and the gravitational force that would be exerted on the particle if it were located at the Earth's center of mass. Whereas the gravitational force subjected by a celestial body on Earth varies inversely as the square of its distance to the Earth, the maximal tidal force varies inversely as, approximately, the cube of this distance. If the tidal force caused by each body were instead equal to its full gravitational force (which is not the case due to the
free fall In classical mechanics, free fall is any motion of a physical object, body where gravity is the only force acting upon it. A freely falling object may not necessarily be falling down in the vertical direction. If the common definition of the word ...
of the whole Earth, not only the oceans, towards these bodies) a different pattern of tidal forces would be observed, e.g. with a much stronger influence from the Sun than from the Moon: The solar gravitational force on the Earth is on average 179 times stronger than the lunar, but because the Sun is on average 389 times farther from the Earth, its field gradient is weaker. The overall proportionality is : \text \propto \frac \propto \rho\left(\frac\right)^3, where is the mass of the heavenly body, is its distance, is its average density, and is its radius. The ratio is related to the angle subtended by the object in the sky. Since the Sun and the Moon have practically the same diameter in the sky, the tidal force of the Sun is less than that of the Moon because its average density is much less, and it is only 46% as large as the lunar, thus during a spring tide, the Moon contributes 69% while the Sun contributes 31%. More precisely, the lunar tidal acceleration (along the Moon–Earth axis, at the Earth's surface) is about 1.1 ''g'', while the solar tidal acceleration (along the Sun–Earth axis, at the Earth's surface) is about 0.52 ''g'', where ''g'' is the
gravitational acceleration In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag (physics), drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodi ...
at the Earth's surface. The effects of the other planets vary as their distances from Earth vary. When Venus is closest to Earth, its effect is 0.000113 times the solar effect. At other times, Jupiter or Mars may have the most effect. The ocean's surface is approximated by a surface referred to as the geoid, which takes into consideration the gravitational force exerted by the earth as well as centrifugal force due to rotation. Now consider the effect of massive external bodies such as the Moon and Sun. These bodies have strong gravitational fields that diminish with distance and cause the ocean's surface to deviate from the geoid. They establish a new equilibrium ocean surface which bulges toward the moon on one side and away from the moon on the other side. The earth's rotation relative to this shape causes the daily tidal cycle. The ocean surface tends toward this equilibrium shape, which is constantly changing, and never quite attains it. When the ocean surface is not aligned with it, it's as though the surface is sloping, and water accelerates in the down-slope direction.


Equilibrium

The equilibrium tide is the idealized tide assuming a landless Earth. It would produce a tidal bulge in the ocean, elongated towards the attracting body (Moon or Sun). It is ''not'' caused by the vertical pull nearest or farthest from the body, which is very weak; rather, it is caused by the tangential or tractive tidal force, which is strongest at about 45 degrees from the body, resulting in a horizontal tidal current.


Laplace's tidal equations

Ocean depths are much smaller than their horizontal extent. Thus, the response to tidal forcing can be modelled using the Laplace tidal equations which incorporate the following features: * The vertical (or radial) velocity is negligible, and there is no vertical shear—this is a sheet flow. * The forcing is only horizontal ( tangential). * The Coriolis effect appears as an inertial force (fictitious) acting laterally to the direction of flow and proportional to velocity. * The surface height's rate of change is proportional to the negative divergence of velocity multiplied by the depth. As the horizontal velocity stretches or compresses the ocean as a sheet, the volume thins or thickens, respectively. The boundary conditions dictate no flow across the coastline and free slip at the bottom. The Coriolis effect (inertial force) steers flows moving towards the Equator to the west and flows moving away from the Equator toward the east, allowing coastally trapped waves. Finally, a dissipation term can be added which is an analog to viscosity.


Amplitude and cycle time

The theoretical amplitude of oceanic tides caused by the Moon is about at the highest point, which corresponds to the amplitude that would be reached if the ocean possessed a uniform depth, there were no landmasses, and the Earth were rotating in step with the Moon's orbit. The Sun similarly causes tides, of which the theoretical amplitude is about (46% of that of the Moon) with a cycle time of 12 hours. At spring tide the two effects add to each other to a theoretical level of , while at neap tide the theoretical level is reduced to . Since the orbits of the Earth about the Sun, and the Moon about the Earth, are elliptical, tidal amplitudes change somewhat as a result of the varying Earth–Sun and Earth–Moon distances. This causes a variation in the tidal force and theoretical amplitude of about ±18% for the Moon and ±5% for the Sun. If both the Sun and Moon were at their closest positions and aligned at new moon, the theoretical amplitude would reach . Real amplitudes differ considerably, not only because of depth variations and continental obstacles, but also because wave propagation across the ocean has a natural period of the same order of magnitude as the rotation period: if there were no land masses, it would take about 30 hours for a long wavelength surface wave to propagate along the Equator halfway around the Earth (by comparison, the Earth's
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time ...
has a natural period of about 57 minutes). Earth tides, which raise and lower the bottom of the ocean, and the tide's own gravitational self attraction are both significant and further complicate the ocean's response to tidal forces.


Dissipation

Earth's tidal oscillations introduce dissipation at an
average In colloquial, ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean the sum of the numbers divided by ...
rate of about 3.75 terawatts.{{Cite journal , last1=Munk , first1=W. , date=1998 , title=Abyssal recipes II: energetics of tidal and wind mixing , journal=Deep-Sea Research Part I , volume=45 , issue=12 , page=1977 , doi=10.1016/S0967-0637(98)00070-3 , last2=Wunsch , first2=C. , bibcode=1998DSRI...45.1977M About 98% of this dissipation is by marine tidal movement.{{Cite journal , last1=Ray , first1=R.D. , year=1996 , title=Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry , journal=
Nature Nature is an inherent character or constitution, particularly of the Ecosphere (planetary), ecosphere or the universe as a whole. In this general sense nature refers to the Scientific law, laws, elements and phenomenon, phenomena of the physic ...
, volume=381 , issue=6583 , pages=595 , doi=10.1038/381595a0 , last2=Eanes , first2=R.J. , last3=Chao , first3=B.F. , bibcode=1996Natur.381..595R, s2cid=4367240
Dissipation arises as basin-scale tidal flows drive smaller-scale flows which experience turbulent dissipation. This tidal drag creates torque on the moon that gradually transfers angular momentum to its orbit, and a gradual increase in Earth–moon separation. The equal and opposite torque on the Earth correspondingly decreases its rotational velocity. Thus, over geologic time, the moon recedes from the Earth, at about {{convert, 3.8, cm, in/year, lengthening the terrestrial day.{{efn, The day is currently lengthening at a rate of about 0.002 seconds per century. Day length has increased by about 2 hours in the last 600 million years. Assuming (as a crude approximation) that the deceleration rate has been constant, this would imply that 70 million years ago, day length was on the order of 1% shorter with about 4 more days per year.


Bathymetry

The shape of the shoreline and the ocean floor changes the way that tides propagate, so there is no simple, general rule that predicts the time of high water from the Moon's position in the sky. Coastal characteristics such as underwater bathymetry and coastline shape mean that individual location characteristics affect tide forecasting; actual high water time and height may differ from model predictions due to the coastal morphology's effects on tidal flow. However, for a given location the relationship between lunar
altitude Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum (geodesy), datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometr ...
and the time of high or low tide (the lunitidal interval) is relatively constant and predictable, as is the time of high or low tide relative to other points on the same coast. For example, the high tide at
Norfolk, Virginia Norfolk ( ) is an independent city (United States), independent city in the U.S. state of Virginia. It had a population of 238,005 at the 2020 United States census, 2020 census, making it the List of cities in Virginia, third-most populous city ...
, U.S., predictably occurs approximately two and a half hours before the Moon passes directly overhead. Land masses and ocean basins act as barriers against water moving freely around the globe, and their varied shapes and sizes affect the size of tidal frequencies. As a result, tidal patterns vary. For example, in the U.S., the East coast has predominantly semi-diurnal tides, as do Europe's Atlantic coasts, while the West coast predominantly has mixed tides.{{cite web , website=U.S.
National Oceanic and Atmospheric Administration The National Oceanic and Atmospheric Administration (NOAA ) is an American scientific and regulatory agency charged with Weather forecasting, forecasting weather, monitoring oceanic and atmospheric conditions, Hydrography, charting the seas, ...
(NOAA) National Ocean Service (Education section) , url=http://oceanservice.noaa.gov/education/kits/tides/media/supp_tide07b.html , title=map showing world distribution of tide patterns, semi-diurnal, diurnal and mixed semi-diurnal , access-date=2009-09-05 , archive-date=2018-08-27 , archive-url=https://web.archive.org/web/20180827211303/http://oceanservice.noaa.gov/education/kits/tides/media/supp_tide07b.html , url-status=live
Human changes to the landscape can also significantly alter local tides.


Observation and prediction


Timing

The tidal forces due to the Moon and Sun generate very long waves which travel all around the ocean following the paths shown in co-tidal charts. The time when the crest of the wave reaches a port then gives the time of high water at the port. The time taken for the wave to travel around the ocean also means that there is a delay between the phases of the Moon and their effect on the tide. Springs and neaps in the
North Sea The North Sea lies between Great Britain, Denmark, Norway, Germany, the Netherlands, Belgium, and France. A sea on the European continental shelf, it connects to the Atlantic Ocean through the English Channel in the south and the Norwegian Se ...
, for example, are two days behind the new/full moon and first/third quarter moon. This is called the tide's ''age''. The ocean bathymetry greatly influences the tide's exact time and height at a particular
coast A coast (coastline, shoreline, seashore) is the land next to the sea or the line that forms the boundary between the land and the ocean or a lake. Coasts are influenced by the topography of the surrounding landscape and by aquatic erosion, su ...
al point. There are some extreme cases; the Bay of Fundy, on the east coast of Canada, is often stated to have the world's highest tides because of its shape, bathymetry, and its distance from the continental shelf edge. Measurements made in November 1998 at Burntcoat Head in the Bay of Fundy recorded a maximum range of {{convert, 16.3, m, ft and a highest predicted extreme of {{convert, 17, m, ft.{{cite journal , last1=O'Reilly , first1=C.T.R. , first2=Ron , last2=Solvason , first3=Christian , last3=Solomon , name-list-style=amp , title=Where are the World's Largest Tides , journal=BIO Annual Report "2004 in Review" , date=2005 , pages=44–46 , editor1-first=J. , editor1-last=Ryan , publisher=Biotechnol. Ind. Org. , location=Washington, D.C.{{cite book , first1=Charles T. , last1=O'reilly , first2=Ron , last2=Solvason , first3=Christian , last3=Solomon , chapter-url=http://www.bofep.org/PDFfiles/BoFEP6thProceedings.pdf , chapter=Resolving the World's largest tides , editor1-first=J.A , editor1-last=Percy , editor2-first=A.J. , editor2-last=Evans , editor3-first=P.G. , editor3-last=Wells , editor4-first=S.J. , editor4-last=Rolston , date=2005 , title=The Changing Bay of Fundy-Beyond 400 years, Proceedings of the 6th Bay of Fundy Workshop, Cornwallis, Nova Scotia, Sept. 29, 2004 to October 2, 2004. Environment Canada-Atlantic Region, Occasional Report no. 23. Dartmouth, N.S. and Sackville, N.B. , access-date=April 1, 2013 , archive-date=August 27, 2016 , archive-url=https://web.archive.org/web/20160827202033/http://www.bofep.org/PDFfiles/BoFEP6thProceedings.pdf , url-status=live Similar measurements made in March 2002 at Leaf Basin, Ungava Bay in northern
Quebec Quebec is Canada's List of Canadian provinces and territories by area, largest province by area. Located in Central Canada, the province shares borders with the provinces of Ontario to the west, Newfoundland and Labrador to the northeast, ...
gave similar values (allowing for measurement errors), a maximum range of {{convert, 16.2, m, ft and a highest predicted extreme of {{convert, 16.8, m, ft. Ungava Bay and the Bay of Fundy lie similar distances from the continental shelf edge, but Ungava Bay is only free of pack ice for about four months every year while the Bay of Fundy rarely freezes.
Southampton Southampton is a port City status in the United Kingdom, city and unitary authority in Hampshire, England. It is located approximately southwest of London, west of Portsmouth, and southeast of Salisbury. Southampton had a population of 253, ...
in the United Kingdom has a double high water caused by the interaction between the ''M''2 and ''M''4 tidal constituents (Shallow water overtides of principal lunar).{{cite journal , last1=Pingree , first1=R.D. , last2=Maddock , first2=L. , year=1978 , title=The M4 tide in the English Channel derived from a non-linear numerical model of the M2 tide , journal=Deep-Sea Research , volume=25 , pages=53–63 Portland has double low waters for the same reason. The ''M''4 tide is found all along the south coast of the United Kingdom, but its effect is most noticeable between the
Isle of Wight The Isle of Wight (Help:IPA/English, /waɪt/ Help:Pronunciation respelling key, ''WYTE'') is an island off the south coast of England which, together with its surrounding uninhabited islets and Skerry, skerries, is also a ceremonial county. T ...
and Portland because the ''M''2 tide is lowest in this region. Because the oscillation modes of the
Mediterranean Sea The Mediterranean Sea ( ) is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean basin and almost completely enclosed by land: on the east by the Levant in West Asia, on the north by Anatolia in West Asia and Southern Eur ...
and the
Baltic Sea The Baltic Sea is an arm of the Atlantic Ocean that is enclosed by the countries of Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, Sweden, and the North European Plain, North and Central European Plain regions. It is the ...
do not coincide with any significant astronomical forcing period, the largest tides are close to their narrow connections with the Atlantic Ocean. Extremely small tides also occur for the same reason in the
Gulf of Mexico The Gulf of Mexico () is an oceanic basin and a marginal sea of the Atlantic Ocean, mostly surrounded by the North American continent. It is bounded on the northeast, north, and northwest by the Gulf Coast of the United States; on the southw ...
and
Sea of Japan The Sea of Japan is the marginal sea between the Japanese archipelago, Sakhalin, the Korean Peninsula, and the mainland of the Russian Far East. The Japanese archipelago separates the sea from the Pacific Ocean. Like the Mediterranean Sea, it ...
. Elsewhere, as along the southern coast of
Australia Australia, officially the Commonwealth of Australia, is a country comprising mainland Australia, the mainland of the Australia (continent), Australian continent, the island of Tasmania and list of islands of Australia, numerous smaller isl ...
, low tides can be due to the presence of a nearby amphidrome.


Analysis

Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
's theory of gravitation first enabled an explanation of why there were generally two tides a day, not one, and offered hope for a detailed understanding of tidal forces and behavior. Although it may seem that tides could be predicted via a sufficiently detailed knowledge of instantaneous astronomical forcings, the actual tide at a given location is determined by astronomical forces accumulated by the body of water over many days. In addition, accurate results would require detailed knowledge of the shape of all the ocean basins—their bathymetry, and coastline shape. Current procedure for analysing tides follows the method of harmonic analysis introduced in the 1860s by William Thomson. It is based on the principle that the astronomical theories of the motions of Sun and Moon determine a large number of component frequencies, and at each frequency there is a component of force tending to produce tidal motion, but that at each place of interest on the Earth, the tides respond at each frequency with an amplitude and phase peculiar to that locality. At each place of interest, the tide heights are therefore measured for a period of time sufficiently long (usually more than a year in the case of a new port not previously studied) to enable the response at each significant tide-generating frequency to be distinguished by analysis, and to extract the tidal constants for a sufficient number of the strongest known components of the astronomical tidal forces to enable practical tide prediction. The tide heights are expected to follow the tidal force, with a constant amplitude and phase delay for each component. Because astronomical frequencies and phases can be calculated with certainty, the tide height at other times can then be predicted once the response to the harmonic components of the astronomical tide-generating forces has been found. The main patterns in the tides are * the twice-daily variation * the difference between the first and second tide of a day * the spring–neap cycle * the annual variation The ''Highest Astronomical Tide'' is the perigean spring tide when both the Sun and Moon are closest to the Earth. When confronted by a periodically varying function, the standard approach is to employ Fourier series, a form of analysis that uses sinusoidal functions as a ''basis'' set, having frequencies that are zero, one, two, three, etc. times the frequency of a particular fundamental cycle. These multiples are called ''harmonics'' of the fundamental frequency, and the process is termed harmonic analysis. If the basis set of sinusoidal functions suit the behaviour being modelled, relatively few harmonic terms need to be added. Orbital paths are very nearly circular, so sinusoidal variations are suitable for tides. For the analysis of tide heights, the Fourier series approach has in practice to be made more elaborate than the use of a single frequency and its harmonics. The tidal patterns are decomposed into many sinusoids having many fundamental frequencies, corresponding (as in the lunar theory) to many different combinations of the motions of the Earth, the Moon, and the angles that define the shape and location of their orbits. For tides, then, ''harmonic analysis'' is not limited to harmonics of a single frequency.{{efn, To demonstrate thi
Tides Home Page
offers a tidal height pattern converted into an ''.mp3'' sound file, and the rich sound is quite different from a pure tone. In other words, the harmonies are multiples of many fundamental frequencies, not just of the fundamental frequency of the simpler Fourier series approach. Their representation as a Fourier series having only one fundamental frequency and its (integer) multiples would require many terms, and would be severely limited in the time-range for which it would be valid. The study of tide height by harmonic analysis was begun by Laplace, William Thomson (Lord Kelvin), and George Darwin. A.T. Doodson extended their work, introducing the ''Doodson Number'' notation to organise the hundreds of resulting terms. This approach has been the international standard ever since, and the complications arise as follows: the tide-raising force is notionally given by sums of several terms. Each term is of the form : A_o \cos(\omega t + p), where : {{math, Ao is the amplitude, : {{math, ω is the angular frequency, usually given in degrees per hour, corresponding to {{math, t measured in hours, : {{math, p is the phase offset with regard to the astronomical state at time ''t'' = 0. There is one term for the Moon and a second term for the Sun. The phase {{math, p of the first harmonic for the Moon term is called the lunitidal interval or high water interval. The next refinement is to accommodate the harmonic terms due to the elliptical shape of the orbits. To do so, the value of the amplitude is taken to be not a constant, but varying with time, about the average amplitude {{math, Ao. To do so, replace {{math, Ao in the above equation with {{math, A(t) where {{math, A is another sinusoid, similar to the cycles and epicycles of Ptolemaic theory. This gives : A(t) = A_o\bigl(1 + A_a \cos(\omega_a t + p_a)\bigr), which is to say an average value {{math, Ao with a sinusoidal variation about it of magnitude {{math, Aa, with frequency {{math, ωa and phase {{math, pa. Substituting this for {{math, Ao in the original equation gives a product of two cosine factors: : A_o \bigl( 1 + A_a \cos(\omega_a t + p_a)\bigr) \cos(\omega t + p). Given that for any {{math, x and {{math, y : \cos x \cos y = \tfrac{1}{2} \cos(x + y) + \tfrac{1}{2} \cos(x - y), it is clear that a compound term involving the product of two cosine terms each with their own frequency is the same as ''three'' simple cosine terms that are to be added at the original frequency and also at frequencies which are the sum and difference of the two frequencies of the product term. (Three, not two terms, since the whole expression is (1 + \cos x) \cos y.) Consider further that the tidal force on a location depends also on whether the Moon (or the Sun) is above or below the plane of the Equator, and that these attributes have their own periods also incommensurable with a day and a month, and it is clear that many combinations result. With a careful choice of the basic astronomical frequencies, the Doodson Number annotates the particular additions and differences to form the frequency of each simple cosine term. Remember that astronomical tides do ''not'' include weather effects. Also, changes to local conditions (sandbank movement, dredging harbour mouths, etc.) away from those prevailing at the measurement time affect the tide's actual timing and magnitude. Organisations quoting a "highest astronomical tide" for some location may exaggerate the figure as a safety factor against analytical uncertainties, distance from the nearest measurement point, changes since the last observation time, ground subsidence, etc., to avert liability should an engineering work be overtopped. Special care is needed when assessing the size of a "weather surge" by subtracting the astronomical tide from the observed tide. Careful Fourier data analysis over a nineteen-year period (the ''National Tidal Datum Epoch'' in the U.S.) uses frequencies called the ''tidal harmonic constituents''. Nineteen years is preferred because the Earth, Moon and Sun's relative positions repeat almost exactly in the Metonic cycle of 19 years, which is long enough to include the 18.613 year lunar nodal tidal constituent. This analysis can be done using only the knowledge of the forcing ''period'', but without detailed understanding of the mathematical derivation, which means that useful tidal tables have been constructed for centuries. The resulting amplitudes and phases can then be used to predict the expected tides. These are usually dominated by the constituents near 12 hours (the ''semi-diurnal'' constituents), but there are major constituents near 24 hours (''diurnal'') as well. Longer term constituents are 14 day or ''fortnightly'', monthly, and semiannual. Semi-diurnal tides dominated coastline, but some areas such as the
South China Sea The South China Sea is a marginal sea of the Western Pacific Ocean. It is bounded in the north by South China, in the west by the Indochinese Peninsula, in the east by the islands of Taiwan island, Taiwan and northwestern Philippines (mainly Luz ...
and the
Gulf of Mexico The Gulf of Mexico () is an oceanic basin and a marginal sea of the Atlantic Ocean, mostly surrounded by the North American continent. It is bounded on the northeast, north, and northwest by the Gulf Coast of the United States; on the southw ...
are primarily diurnal. In the semi-diurnal areas, the primary constituents ''M''2 (lunar) and ''S''2 (solar) periods differ slightly, so that the relative phases, and thus the amplitude of the combined tide, change fortnightly (14 day period). In the ''M''2 plot above, each cotidal line differs by one hour from its neighbors, and the thicker lines show tides in phase with equilibrium at Greenwich. The lines rotate around the amphidromic points counterclockwise in the northern hemisphere so that from Baja California Peninsula to
Alaska Alaska ( ) is a non-contiguous U.S. state on the northwest extremity of North America. Part of the Western United States region, it is one of the two non-contiguous U.S. states, alongside Hawaii. Alaska is also considered to be the north ...
and from
France France, officially the French Republic, is a country located primarily in Western Europe. Overseas France, Its overseas regions and territories include French Guiana in South America, Saint Pierre and Miquelon in the Atlantic Ocean#North Atlan ...
to
Ireland Ireland (, ; ; Ulster Scots dialect, Ulster-Scots: ) is an island in the North Atlantic Ocean, in Northwestern Europe. Geopolitically, the island is divided between the Republic of Ireland (officially Names of the Irish state, named Irelan ...
the ''M''2 tide propagates northward. In the southern hemisphere this direction is clockwise. On the other hand, ''M''2 tide propagates counterclockwise around New Zealand, but this is because the islands act as a dam and permit the tides to have different heights on the islands' opposite sides. (The tides do propagate northward on the east side and southward on the west coast, as predicted by theory.) The exception is at Cook Strait where the tidal currents periodically link high to low water. This is because cotidal lines 180° around the amphidromes are in opposite phase, for example high water across from low water at each end of Cook Strait. Each tidal constituent has a different pattern of amplitudes, phases, and amphidromic points, so the ''M''2 patterns cannot be used for other tide components.


Example calculation

Because the Moon is moving in its orbit around the Earth and in the same sense as the Earth's rotation, a point on the Earth must rotate slightly further to catch up so that the time between semi-diurnal tides is not twelve but 12.4206 hours—a bit over twenty-five minutes extra. The two peaks are not equal. The two high tides a day alternate in maximum heights: lower high (just under three feet), higher high (just over three feet), and again lower high. Likewise for the low tides. When the Earth, Moon, and Sun are in line (Sun–Earth–Moon, or Sun–Moon–Earth) the two main influences combine to produce spring tides; when the two forces are opposing each other as when the angle Moon–Earth–Sun is close to ninety degrees, neap tides result. As the Moon moves around its orbit it changes from north of the Equator to south of the Equator. The alternation in high tide heights becomes smaller, until they are the same (at the lunar equinox, the Moon is above the Equator), then redevelop but with the other polarity, waxing to a maximum difference and then waning again.


Current

The tides' influence on current or flow is much more difficult to analyze, and data is much more difficult to collect. A tidal height is a scalar quantity and varies smoothly over a wide region. A flow is a vector quantity, with magnitude and direction, both of which can vary substantially with depth and over short distances due to local bathymetry. Also, although a water channel's center is the most useful measuring site, mariners object when current-measuring equipment obstructs waterways. A flow proceeding up a curved channel may have similar magnitude, even though its direction varies continuously along the channel. Surprisingly, flood and ebb flows are often not in opposite directions. Flow direction is determined by the upstream channel's shape, not the downstream channel's shape. Likewise, eddies may form in only one flow direction. Nevertheless, tidal current analysis is similar to tidal heights analysis: in the simple case, at a given location the flood flow is in mostly one direction, and the ebb flow in another direction. Flood velocities are given positive sign, and ebb velocities negative sign. Analysis proceeds as though these are tide heights. In more complex situations, the main ebb and flood flows do not dominate. Instead, the flow direction and magnitude trace an ellipse over a tidal cycle (on a polar plot) instead of along the ebb and flood lines. In this case, analysis might proceed along pairs of directions, with the primary and secondary directions at right angles. An alternative is to treat the tidal flows as complex numbers, as each value has both a magnitude and a direction. Tide flow information is most commonly seen on
nautical chart A nautical chart or hydrographic chart is a graphic representation of a sea region or water body and adjacent coasts or river bank, banks. Depending on the scale (map), scale of the chart, it may show depths of water (bathymetry) and heights of ...
s, presented as a table of flow speeds and bearings at hourly intervals, with separate tables for spring and neap tides. The timing is relative to high water at some harbour where the tidal behaviour is similar in pattern, though it may be far away. As with tide height predictions, tide flow predictions based only on astronomical factors do not incorporate weather conditions, which can ''completely'' change the outcome. The tidal flow through Cook Strait between the two main islands of New Zealand is particularly interesting, as the tides on each side of the strait are almost exactly out of phase, so that one side's high water is simultaneous with the other's low water. Strong currents result, with almost zero tidal height change in the strait's center. Yet, although the tidal surge normally flows in one direction for six hours and in the reverse direction for six hours, a particular surge might last eight or ten hours with the reverse surge enfeebled. In especially boisterous weather conditions, the reverse surge might be entirely overcome so that the flow continues in the same direction through three or more surge periods. A further complication for Cook Strait's flow pattern is that the tide at the south side (e.g. at Nelson) follows the common bi-weekly spring–neap tide cycle (as found along the west side of the country), but the north side's tidal pattern has only ''one'' cycle per month, as on the east side:
Wellington Wellington is the capital city of New Zealand. It is located at the south-western tip of the North Island, between Cook Strait and the Remutaka Range. Wellington is the third-largest city in New Zealand (second largest in the North Island ...
, and Napier. The graph of Cook Strait's tides shows separately the high water and low water height and time, through November 2007; these are ''not'' measured values but instead are calculated from tidal parameters derived from years-old measurements. Cook Strait's nautical chart offers tidal current information. For instance the January 1979 edition for {{coord, 41, 13.9, S, 174, 29.6, E (northwest of Cape Terawhiti) refers timings to Westport while the January 2004 issue refers to Wellington. Near Cape Terawhiti in the middle of Cook Strait the tidal height variation is almost nil while the tidal current reaches its maximum, especially near the notorious Karori Rip. Aside from weather effects, the actual currents through Cook Strait are influenced by the tidal height differences between the two ends of the strait and as can be seen, only one of the two spring tides at the north west end of the strait near Nelson has a counterpart spring tide at the south east end (Wellington), so the resulting behaviour follows neither reference harbour.{{Citation needed, date=September 2009


Power generation

{{Main, Tidal power Tidal energy can be extracted by two means: inserting a water
turbine A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical ...
into a tidal current, or building ponds that release/admit water through a turbine. In the first case, the energy amount is entirely determined by the timing and tidal current magnitude. However, the best currents may be unavailable because the turbines would obstruct ships. In the second, the impoundment dams are expensive to construct, natural water cycles are completely disrupted, ship navigation is disrupted. However, with multiple ponds, power can be generated at chosen times. So far, there are few installed systems for tidal power generation (most famously, La Rance at Saint Malo, France) which face many difficulties. Aside from environmental issues, simply withstanding corrosion and biological fouling pose engineering challenges. Tidal power proponents point out that, unlike wind power systems, generation levels can be reliably predicted, save for weather effects. While some generation is possible for most of the tidal cycle, in practice turbines lose efficiency at lower operating rates. Since the power available from a flow is proportional to the cube of the flow speed, the times during which high power generation is possible are brief.


Navigation

Tidal flows are important for navigation, and significant errors in position occur if they are not accommodated. Tidal heights are also important; for example many rivers and harbours have a shallow "bar" at the entrance which prevents boats with significant draft from entering at low tide. Until the advent of automated navigation, competence in calculating tidal effects was important to naval officers. The certificate of examination for lieutenants in the
Royal Navy The Royal Navy (RN) is the naval warfare force of the United Kingdom. It is a component of His Majesty's Naval Service, and its officers hold their commissions from the King of the United Kingdom, King. Although warships were used by Kingdom ...
once declared that the prospective officer was able to "shift his tides". Tidal flow timings and velocities appear in ''tide charts'' or a tidal stream atlas. Tide charts come in sets. Each chart covers a single hour between one high water and another (they ignore the leftover 24 minutes) and show the average tidal flow for that hour. An arrow on the tidal chart indicates the direction and the average flow speed (usually in knots) for spring and neap tides. If a tide chart is not available, most nautical charts have " tidal diamonds" which relate specific points on the chart to a table giving tidal flow direction and speed. The standard procedure to counteract tidal effects on navigation is to (1) calculate a " dead reckoning" position (or DR) from travel distance and direction, (2) mark the chart (with a vertical cross like a plus sign) and (3) draw a line from the DR in the tide's direction. The distance the tide moves the boat along this line is computed by the tidal speed, and this gives an "estimated position" or EP (traditionally marked with a dot in a triangle).
Nautical chart A nautical chart or hydrographic chart is a graphic representation of a sea region or water body and adjacent coasts or river bank, banks. Depending on the scale (map), scale of the chart, it may show depths of water (bathymetry) and heights of ...
s display the water's "charted depth" at specific locations with " soundings" and the use of bathymetric
contour line A contour line (also isoline, isopleth, isoquant or isarithm) of a Function of several real variables, function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value. It is a ...
s to depict the submerged surface's shape. These depths are relative to a " chart datum", which is typically the water level at the lowest possible astronomical tide (although other datums are commonly used, especially historically, and tides may be lower or higher for meteorological reasons) and are therefore the minimum possible water depth during the tidal cycle. "Drying heights" may also be shown on the chart, which are the heights of the exposed seabed at the lowest astronomical tide. Tide tables list each day's high and low water heights and times. To calculate the actual water depth, add the charted depth to the published tide height. Depth for other times can be derived from tidal curves published for major ports. The rule of twelfths can suffice if an accurate curve is not available. This approximation presumes that the increase in depth in the six hours between low and high water is: first hour — 1/12, second — 2/12, third — 3/12, fourth — 3/12, fifth — 2/12, sixth — 1/12.


Biological aspects


Intertidal ecology

{{Main, Intertidal ecology {{Further, Intertidal zone Intertidal ecology is the study of
ecosystem An ecosystem (or ecological system) is a system formed by Organism, organisms in interaction with their Biophysical environment, environment. The Biotic material, biotic and abiotic components are linked together through nutrient cycles and en ...
s between the low- and high-water lines along a shore. At low water, the intertidal zone is exposed (or ''emersed''), whereas at high water, it is underwater (or ''immersed''). Intertidal ecologists therefore study the interactions between intertidal organisms and their environment, as well as among the different species. The most important interactions may vary according to the type of intertidal community. The broadest classifications are based on substrates —
rocky shore A rocky shore is an intertidal area of seacoasts where solid rock predominates. Rocky shores are biologically rich environments, and are a useful "natural laboratory" for studying intertidal ecology and other biological processes. Due to th ...
or soft bottom. Intertidal organisms experience a highly variable and often hostile environment, and have adapted to cope with and even exploit these conditions. One easily visible feature is vertical zonation, in which the community divides into distinct horizontal bands of specific species at each elevation above low water. A species' ability to cope with desiccation determines its upper limit, while
competition Competition is a rivalry where two or more parties strive for a common goal which cannot be shared: where one's gain is the other's loss (an example of which is a zero-sum game). Competition can arise between entities such as organisms, indi ...
with other species sets its lower limit. Humans use intertidal regions for food and recreation. Overexploitation can damage intertidals directly. Other anthropogenic actions such as introducing
invasive species An invasive species is an introduced species that harms its new environment. Invasive species adversely affect habitats and bioregions, causing ecological, environmental, and/or economic damage. The term can also be used for native spec ...
and
climate change Present-day climate change includes both global warming—the ongoing increase in Global surface temperature, global average temperature—and its wider effects on Earth's climate system. Climate variability and change, Climate change in ...
have large negative effects. Marine Protected Areas are one option communities can apply to protect these areas and aid scientific
research Research is creative and systematic work undertaken to increase the stock of knowledge. It involves the collection, organization, and analysis of evidence to increase understanding of a topic, characterized by a particular attentiveness to ...
.


Biological rhythms

The approximately 12-hour and fortnightly tidal cycle has large effects on intertidal and marine organisms. Hence their biological rhythms tend to occur in rough multiples of these periods. Many other animals such as the
vertebrate Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain. The vertebrates make up the subphylum Vertebra ...
s, display similar circatidal rhythms. Examples include
gestation Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pregn ...
and egg hatching. In humans, the
menstrual cycle The menstrual cycle is a series of natural changes in hormone production and the structures of the uterus and ovaries of the female reproductive system that makes pregnancy possible. The ovarian cycle controls the production and release of eg ...
lasts roughly a lunar month, an even multiple of the tidal period. Such parallels at least hint at the common descent of all animals from a marine ancestor.{{cite book , last=Darwin , first=Charles , author-link=Charles Darwin , date=1871 , title= The Descent of Man, and Selection in Relation to Sex , publisher=John Murray , location=London


Other tides

When oscillating tidal currents in the stratified ocean flow over uneven bottom topography, they generate internal waves with tidal frequencies. Such waves are called '' internal tides''. Shallow areas in otherwise open water can experience rotary tidal currents, flowing in directions that continually change and thus the flow direction (not the flow) completes a full rotation in {{frac, 12, 1, 2 hours (for example, the Nantucket Shoals).{{cite journal , last=Le Lacheur , first=Embert A. , url=https://www.jstor.org/pss/208104 , title=Tidal currents in the open sea: Subsurface tidal currents at Nantucket Shoals Light Vessel , journal= Geographical Review , date=April 1924 , volume=14 , issue=2 , pages=282–286 , doi=10.2307/208104 , jstor=208104 , bibcode=1924GeoRv..14..282L , access-date=4 February 2012 , archive-date=16 September 2023 , archive-url=https://web.archive.org/web/20230916153559/https://www.jstor.org/stable/208104 , url-status=live , url-access=subscription In addition to oceanic tides, large lakes can experience small tides and even planets can experience '' atmospheric tides'' and '' Earth tides''. These are continuum mechanical phenomena. The first two take place in
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
s. The third affects the Earth's thin
solid Solid is a state of matter where molecules are closely packed and can not slide past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree to which they are resisted dependent upon the ...
crust surrounding its semi-liquid interior (with various modifications).


Lake tides

Large lakes such as Superior and Erie can experience tides of {{convert, 1, to, 4, cm, in, abbr=on, sigfig=2, but these can be masked by meteorologically induced phenomena such as seiche. The tide in
Lake Michigan Lake Michigan ( ) is one of the five Great Lakes of North America. It is the second-largest of the Great Lakes by volume () and depth () after Lake Superior and the third-largest by surface area (), after Lake Superior and Lake Huron. To the ...
is described as {{convert, 0.5, to, 1.5, in, cm, abbr=on, order=flip or {{convert, 1+3/4, in, cm, order=flip, abbr=on. This is so small that other larger effects completely mask any tide, and as such these lakes are considered non-tidal.


Atmospheric tides

{{main, Atmospheric tide Atmospheric tides are negligible at ground level and aviation altitudes, masked by
weather Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloud cover, cloudy. On Earth, most weather phenomena occur in the lowest layer of the planet's atmo ...
's much more important effects. Atmospheric tides are both gravitational and thermal in origin and are the dominant dynamics from about {{convert, 80, to , 120, km, mi, above which the molecular density becomes too low to support fluid behavior.


Earth tides

{{Main, Earth tide Earth tides or terrestrial tides affect the entire Earth's mass, which acts similarly to a liquid gyroscope with a very thin crust. The Earth's crust shifts (in/out, east/west, north/south) in response to lunar and solar gravitation, ocean tides, and atmospheric loading. While negligible for most human activities, terrestrial tides' semi-diurnal amplitude can reach about {{convert, 55, cm, in at the Equator—{{convert, 15, cm, in due to the Sun—which is important in GPS calibration and VLBI measurements. Precise astronomical angular measurements require knowledge of the Earth's rotation rate and
polar motion Polar motion of the Earth is the motion of the Earth's rotation, Earth's rotational axis relative to its Earth's crust, crust. This is measured with respect to a reference frame in which the solid Earth is fixed (a so-called ''Earth-centered, Ea ...
, both of which are influenced by Earth tides. The semi-diurnal ''M''2 Earth tides are nearly in phase with the Moon with a lag of about two hours.{{Citation needed, date=August 2008


Galactic tides

'' Galactic tides'' are the tidal forces exerted by galaxies on stars within them and satellite galaxies orbiting them. The galactic tide's effects on the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
's Oort cloud are believed to cause 90 percent of long-period comets.


Misnomers

Tsunami A tsunami ( ; from , ) is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake. Earthquakes, volcanic eruptions and underwater explosions (including detonations, ...
s, the large waves that occur after earthquakes, are sometimes called ''tidal waves'', but this name is given by their ''resemblance'' to the tide, rather than any causal link to the tide. Other phenomena unrelated to tides but using the word ''tide'' are rip tide, storm tide, hurricane tide, and
black Black is a color that results from the absence or complete absorption of visible light. It is an achromatic color, without chroma, like white and grey. It is often used symbolically or figuratively to represent darkness.Eva Heller, ''P ...
or red tides. Many of these usages are historic and refer to the earlier meaning of tide as "a portion of time, a season" and "a stream, current or flood".{{cite OED2, tide, volume=XVIII, page=64


See also

{{colbegin * {{annotated link, Aquaculture * {{annotated link, Clairaut's theorem * {{annotated link, Coastal erosion * {{annotated link, Establishment of a port * {{annotated link, Head of tide, aka=tidal reach, or tidal limit * {{annotated link, Hough function * {{annotated link, King tide * {{annotated link, Lunar Laser Ranging experiment * {{annotated link, Lunar phase * {{annotated link, Raised beach, aka=Marine terrace * {{annotated link, Mean high water spring * {{annotated link, Mean low water spring * {{annotated link, Orbit of the Moon * {{annotated link, Primitive equations * {{annotated link, Tidal barrage * {{annotated link, Tidal island * {{annotated link, Tidal locking * {{annotated link, Tidal prism * {{annotated link, Tidal resonance * {{annotated link, Tidal river * {{annotated link, Tidal stream generator * {{annotated link, Tidal triggering of earthquakes * {{annotated link, Tide pool * {{annotated link, Tideline * {{annotated link, Tides in marginal seas {{colend {{Portal bar, Geography, Oceans, Water, Solar System, Earth sciences, Geophysics


Notes

{{notelist


References

{{Reflist, 30em


Further reading

{{refbegin
150 Years of Tides on the Western Coast: The Longest Series of Tidal Observations in the Americas
{{Webarchive, url=https://web.archive.org/web/20110505153935/http://tidesandcurrents.noaa.gov/publications/150_years_of_tides.pdf , date=2011-05-05 NOAA (2004).
Eugene I. Butikov: ''A dynamical picture of the ocean tides''
{{Webarchive, url=https://web.archive.org/web/20080911141308/http://faculty.ifmo.ru/butikov/Projects/tides1.pdf , date=2008-09-11

{{Webarchive, url=https://web.archive.org/web/20070512004000/http://www.vialattea.net/maree/eng/index.htm , date=2007-05-12 : Why the centrifugal force does not explain the tide's opposite lobe (with nice animations).
O. Toledano ''et al.'' (2008): ''Tides in asynchronous binary systems''
{{Webarchive, url=https://web.archive.org/web/20170809040314/https://arxiv.org/abs/astro-ph/0610563v1 , date=2017-08-09 * Gaylord Johnso
"How Moon and Sun Generate the Tides"
{{Webarchive, url=https://web.archive.org/web/20230916153532/https://books.google.com/books?id=uSgDAAAAMBAJ&pg=PA50 , date=2023-09-16 ''Popular Science'', April 1934 {{refend * {{cite book , last1=Simon , first1=Bernard , translator-last=Manley , translator-first=David , year=2013 , orig-date=2007 , title=Coastal Tides , url=https://diffusion.shom.fr/pro/coastal-tides-version-anglaise-de-la-maree-oceanique-cotiere.html , publisher= Institut océanographique, Fondation Albert Ier, Prince de Monaco , isbn=978-2-903581-83-1 , access-date=2021-10-18 , archive-date=2022-11-13 , archive-url=https://web.archive.org/web/20221113030309/https://diffusion.shom.fr/pro/coastal-tides-version-anglaise-de-la-maree-oceanique-cotiere.html , url-status=dead


External links

{{wikiquote, Tides {{Commons category, Tides
NOAA Tides and Currents information and data


{{Webarchive, url=https://web.archive.org/web/20150509125035/http://co-ops.nos.noaa.gov/predhist.html , date=2015-05-09

{{Webarchive, url=https://web.archive.org/web/20160304000526/http://oceanworld.tamu.edu/resources/ocng_textbook/chapter17/chapter17_04.htm , date=2016-03-04
UK Admiralty Easytide


* ttp://www.bom.gov.au/oceanography/tides/index.shtml Tide Predictions for Australia, South Pacific & Antarctica
Tide and Current Predictor, for stations around the world
{{Geophysics navbox {{physical oceanography {{Nature {{Underwater diving, scidiv {{Authority control Geodesy Navigation Articles containing video clips Moon