HOME

TheInfoList



OR:

Sex-determining region Y protein (SRY), or Testis-determining factor (TDF), is a
DNA-binding protein DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, becau ...
(also known as gene-regulatory protein/
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fu ...
) encoded by the ''SRY''
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
that is responsible for the initiation of male sex determination in
theria Theria (; Greek: , wild beast) is a subclass of mammals amongst the Theriiformes. Theria includes the eutherians (including the placental mammals) and the metatherians (including the marsupials) but excludes the egg-laying monotremes. C ...
n mammals (
placental mammals Placental mammals (infraclass Placentalia ) are one of the three extant subdivisions of the class Mammalia, the other two being Monotremata and Marsupialia. Placentalia contains the vast majority of extant mammals, which are partly distinguishe ...
and
marsupial Marsupials are any members of the mammalian infraclass Marsupialia. All extant marsupials are endemic to Australasia, Wallacea and the Americas. A distinctive characteristic common to most of these species is that the young are carried in a ...
s). SRY is an
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
less sex-determining gene on the
Y chromosome The Y chromosome is one of two sex chromosomes ( allosomes) in therian mammals, including humans, and many other animals. The other is the X chromosome. Y is normally the sex-determining chromosome in many species, since it is the presence or a ...
. Mutations in this gene lead to a range of
disorders of sex development Disorders of sex development (DSDs), also known as differences in sex development, diverse sex development and variations in sex characteristics (VSC), are congenital conditions affecting the reproductive system, in which development of chromos ...
with varying effects on an individual's
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological prop ...
and
genotype The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a ...
. TDF is a member of the SOX (SRY-like box) gene family of DNA-binding proteins. When complexed with the SF1 protein, TDF acts as a
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fu ...
that causes upregulation of other transcription factors, most importantly
SOX9 Transcription factor SOX-9 is a protein that in humans is encoded by the ''SOX9'' gene. Function SOX-9 recognizes the sequence CCTTGAG along with other members of the HMG-box class DNA-binding proteins. It is expressed by proliferating but n ...
. Its expression causes the development of primary
sex cord In embryogenesis, the sex cords (primitive sex cords, primitive seminiferous cords, or gonadal cords) are structures that develop from the genital ridges that further differentiate based on an embryo's sex. After sexual differentiation, at day 49, ...
s, which later develop into
seminiferous tubule Seminiferous tubules are located within the testes, and are the specific location of meiosis, and the subsequent creation of male gametes, namely spermatozoa. Structure The epithelium of the tubule consists of a type of sustentacular cells know ...
s. These cords form in the central part of the yet-undifferentiated
gonad A gonad, sex gland, or reproductive gland is a mixed gland that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces ...
, turning it into a
testis A testicle or testis (plural testes) is the male reproductive gland or gonad in all bilaterians, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testoster ...
. The now-induced
Leydig cell Leydig cells, also known as interstitial cells of the testes and interstitial cells of Leydig, are found adjacent to the seminiferous tubules in the testicle and produce testosterone in the presence of luteinizing hormone (LH). They are polyhedra ...
s of the testis then start secreting
testosterone Testosterone is the primary sex hormone and anabolic steroid in males. In humans, testosterone plays a key role in the development of male reproductive tissues such as testes and prostate, as well as promoting secondary sexual characteris ...
, while the
Sertoli cell Sertoli cells are a type of sustentacular "nurse" cell found in human testes which contribute to the process of spermatogenesis (the production of sperm) as a structural component of the seminiferous tubules. They are activated by follicle-sti ...
s produce
anti-Müllerian hormone Anti-Müllerian hormone (AMH), also known as Müllerian-inhibiting hormone (MIH), is a glycoprotein hormone structurally related to inhibin and activin from the transforming growth factor beta superfamily, whose key roles are in growth differen ...
. SRY gene effects normally take place 6–8 weeks after fetus formation which inhibits the female anatomical structural growth in males. It also works towards developing the dominant male characteristics.


Gene evolution and regulation


Evolution

''SRY'' may have arisen from a
gene duplication Gene duplication (or chromosomal duplication or gene amplification) is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene ...
of the X chromosome bound gene '' SOX3'', a member of the Sox family. This duplication occurred after the split between
monotreme Monotremes () are prototherian mammals of the order Monotremata. They are one of the three groups of living mammals, along with placentals ( Eutheria), and marsupials (Metatheria). Monotremes are typified by structural differences in their bra ...
s and
theria Theria (; Greek: , wild beast) is a subclass of mammals amongst the Theriiformes. Theria includes the eutherians (including the placental mammals) and the metatherians (including the marsupials) but excludes the egg-laying monotremes. C ...
ns. Monotremes lack SRY and some of their sex chromosomes share homology with bird sex chromosomes. ''SRY'' is a quickly evolving gene, and its regulation has been difficult to study because sex determination is not a highly conserved phenomenon within the animal kingdom. Even within
marsupial Marsupials are any members of the mammalian infraclass Marsupialia. All extant marsupials are endemic to Australasia, Wallacea and the Americas. A distinctive characteristic common to most of these species is that the young are carried in a ...
s and
placental Placental mammals (infraclass Placentalia ) are one of the three extant subdivisions of the class Mammalia, the other two being Monotremata and Marsupialia. Placentalia contains the vast majority of extant mammals, which are partly distinguishe ...
s, which use ''SRY'' in their sex determination process, the action of ''SRY'' differs between species. The gene sequence also changes; while the core of the gene, the High-mobility group (HMG) box, is conserved between species, other regions of the gene are not. ''SRY'' is one of only four genes on the human Y chromosome that have been shown to have arisen from the original Y chromosome. The other genes on the human Y chromosome arose from an autosome that fused with the original Y chromosome.


Regulation

''SRY'' has little in common with sex determination genes of other model organisms, therefore, mice are the main model research organisms that can be utilized for its study. Understanding its regulation is further complicated because even between mammalian species, there is little protein sequence conservation. The only conserved group in mice and other mammals is the High-mobility group (HMG) box region that is responsible for DNA binding. Mutations in this region result in sex reversal, where the opposite sex is produced. Because there is little conservation, the ''SRY'' promoter, regulatory elements and regulation are not well understood. Within related mammalian groups there are homologies within the first 400-600 base pairs upstream from the translational start site. In vitro studies of human ''SRY'' promoter have shown that a region of at least 310 bp upstream to translational start site are required for ''SRY'' promoter function. It's been shown that binding of three transcription factors, Steroidogenic factor 1 ( SF1), Specificity Protein 1 (
Sp1 transcription factor Transcription factor Sp1, also known as specificity protein 1* is a protein that in humans is encoded by the SP1 gene. Function The protein encoded by this gene is a zinc finger transcription factor that binds to GC-rich motifs of many promot ...
) and Wilms tumor protein 1 ( WT1), to the human promoter sequence, influence expression of ''SRY''. The promoter region has two Sp1 binding sites, at -150 and -13 that function as regulatory sites. Sp1 is a transcription factor that binds GC-rich consensus sequences, and mutation of the ''SRY'' binding sites leads to a 90% reduction in gene transcription. Studies of SF1 have resulted in less definite results. Mutations of SF1 can lead to sex reversal and deletion lead to incomplete gonad development. However, it's not clear how SF1 interacts with the ''SR1'' promoter directly. The promoter region also has two WT1 binding sites at -78 and -87 bp from the ATG codon. WT1 is transcription factor that has four C-terminal Zinc fingers and an N-terminal Pro/Glu-rich region and primarily functions as an activator. Mutation of the Zinc fingers or inactivation of WT1 results in reduced male gonad size. Deletion of the gene resulted in complete sex reversal. It is not clear how WT1 functions to up-regulate ''SRY'', but some research suggests that it helps stabilize message processing. However, there are complications to this hypothesis, because WT1 also is responsible for expression of an antagonist of male development, DAX1, which stands for Dosage-sensitive sex reversal, Adrenal hypoplasia critical region, on chromosome X, gene 1. An additional copy of DAX1 in mice leads to sex reversal. It is not clear how DAX1 functions, and many different pathways have been suggested, including ''SRY'' transcriptional destabilization and RNA binding. There is evidence from work on suppression of male development that DAX1 can interfere with function of SF1, and in turn transcription of ''SRY'' by recruiting corepressors. There is also evidence that GATA binding protein 4 (GATA4) and FOG2 contribute to activation of ''SRY'' by associating with its promoter. How these proteins regulate ''SRY'' transcription is not clear, but FOG2 and GATA4 mutants have significantly lower levels of ''SRY'' transcription. FOGs have zinc finger motifs that can bind DNA, but there is no evidence of FOG2 interaction with ''SRY''. Studies suggest that FOG2 and GATA4 associate with nucleosome remodeling proteins that could lead to its activation.


Function

During gestation, the cells of the primordial gonad that lie along the urogenital ridge are in a bipotential state, meaning they possess the ability to become either male cells ( Sertoli and Leydig cells) or female cells ( follicle cells and
theca In biology, a theca (plural thecae) is a sheath or a covering. Botany In botany, the theca is related to plant's flower anatomy. The theca of an angiosperm consists of a pair of microsporangia that are adjacent to each other and share a commo ...
cells). TDF initiates testis differentiation by activating male-specific transcription factors that allow these bipotential cells to differentiate and proliferate. TDF accomplishes this by upregulating
SOX9 Transcription factor SOX-9 is a protein that in humans is encoded by the ''SOX9'' gene. Function SOX-9 recognizes the sequence CCTTGAG along with other members of the HMG-box class DNA-binding proteins. It is expressed by proliferating but n ...
, a transcription factor with a DNA-binding site very similar to TDF's. SOX9 leads to the upregulation of fibroblast growth factor 9 (
Fgf9 Glia-activating factor is a protein that in humans is encoded by the ''FGF9'' gene. Function The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell surviva ...
), which in turn leads to further upregulation of SOX9. Once proper SOX9 levels are reached, the bipotential cells of the gonad begin to differentiate into Sertoli cells. Additionally, cells expressing TDF will continue to proliferate to form the primordial testis. While this constitutes the basic series of events, this brief review should be taken with caution since there are many more factors that influence sex differentiation.


Action in the nucleus

The TDF protein consists of three main regions. The central region encompasses the HMG (high-mobility group) domain, which contains
nuclear localization sequence A nuclear localization signal ''or'' sequence (NLS) is an amino acid sequence that 'tags' a protein for import into the cell nucleus by nuclear transport. Typically, this signal consists of one or more short sequences of positively charged lysines ...
s and acts as the DNA-binding domain. The
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
domain has no conserved structure, and the
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the amin ...
domain can be phosphorylated to enhance DNA-binding. The process begins with nuclear localization of TDF by
acetylation : In organic chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed ''acetate esters'' or simply ''acetates''. Deacetylation is the opp ...
of the nuclear localization signal regions, which allows for the binding of
importin β Importin is a type of karyopherin that transports protein molecules from the cell's cytoplasm to the nucleus. It does so by binding to specific recognition sequences, called nuclear localization sequences (NLS). Importin has two subunits, import ...
and
calmodulin Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the bi ...
to TDF, facilitating its import into the nucleus. Once in the nucleus, TDF and SF1 (
steroidogenic factor 1 The steroidogenic factor 1 (SF-1) protein is a transcription factor involved in sex determination by controlling activity of genes related to the reproductive glands or gonads and adrenal glands. This protein is encoded by the NR5A1 gene, a me ...
, another transcriptional regulator) complex and bind to TESCO (testis-specific enhancer of Sox9 core), the testes-specific enhancer element of the Sox9 gene in Sertoli cell precursors, located upstream of the Sox9 gene transcription start site. Specifically, it is the HMG region of TDF that binds to the minor groove of the DNA target sequence, causing the DNA to bend and unwind. The establishment of this particular DNA "architecture" facilitates the transcription of the Sox9 gene. In the nucleus of Sertoli cells, SOX9 directly targets the ''Amh'' gene as well as the
prostaglandin D synthase Prostaglandin-H2 D-isomerase (PTGDS) is an enzyme that in humans is encoded by the ''PTGDS'' gene. Function The protein encoded by this gene is a glutathione-independent prostaglandin D synthase that catalyzes the conversion of prostaglandin ...
(''Ptgds)'' gene. SOX9 binding to the enhancer near the ''Amh'' promoter allows for the synthesis of ''Amh'' while SOX9 binding to the ''Ptgds'' gene allows for the production of prostaglandin D2 (PGD2). The reentry of SOX9 into the nucleus is facilitated by autocrine or paracrine signaling conducted by PGD2. SOX9 protein then initiates a
positive feedback Positive feedback (exacerbating feedback, self-reinforcing feedback) is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in th ...
loop, involving SOX9 acting as its own transcription factor and resulting in the synthesis of large amounts of SOX9.


SOX9 and testes differentiation

The SF1 protein, on its own, leads to minimal transcription of the
SOX9 Transcription factor SOX-9 is a protein that in humans is encoded by the ''SOX9'' gene. Function SOX-9 recognizes the sequence CCTTGAG along with other members of the HMG-box class DNA-binding proteins. It is expressed by proliferating but n ...
gene in both the XX and XY bipotential gonadal cells along the urogenital ridge. However, binding of the TDF-SF1 complex to the testis-specific enhancer (TESCO) on SOX9 leads to significant up-regulation of the gene in only the XY gonad, while transcription in the XX gonad remains negligible. Part of this up-regulation is accomplished by SOX9 itself through a positive feedback loop; like TDF, SOX9 complexes with SF1 and binds to the TESCO enhancer, leading to further expression of SOX9 in the XY gonad. Two other proteins,
FGF9 Glia-activating factor is a protein that in humans is encoded by the ''FGF9'' gene. Function The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell surviva ...
(fibroblast growth factor 9) and PDG2 (prostaglandin D2), also maintain this up-regulation. Although their exact pathways are not fully understood, they have been proven to be essential for the continued expression of SOX9 at the levels necessary for testes development.
SOX9 Transcription factor SOX-9 is a protein that in humans is encoded by the ''SOX9'' gene. Function SOX-9 recognizes the sequence CCTTGAG along with other members of the HMG-box class DNA-binding proteins. It is expressed by proliferating but n ...
and TDF are believed to be responsible for the cell-autonomous differentiation of supporting cell precursors in the gonads into Sertoli cells, the beginning of testes development. These initial Sertoli cells, in the center of the gonad, are hypothesized to be the starting point for a wave of FGF9 that spreads throughout the developing XY gonad, leading to further differentiation of Sertoli cells via the up-regulation of SOX9. SOX9 and TDF are also believed to be responsible for many of the later processes of testis development (such as Leydig cell differentiation, sex cord formation, and formation of testis-specific vasculature), although exact mechanisms remain unclear. It has been shown, however, that SOX9, in the presence of PDG2, acts directly on Amh (encoding anti-Müllerian hormone) and is capable of inducing testis formation in XX mice gonads, indicating it's vital to testes development.


SRY disorders' influence on sex expression

Embryos are gonadally identical, regardless of genetic sex, until a certain point in development when the testis-determining factor causes male sex organs to develop. A typical male karyotype is XY, whereas a female's is XX. There are exceptions, however, in which SRY plays a major role. Individuals with
Klinefelter syndrome Klinefelter syndrome (KS), also known as 47,XXY, is an aneuploid genetic condition where a male has an additional copy of the X chromosome. The primary features are infertility and small, poorly functioning testicles. Usually, symptoms are s ...
inherit a normal Y chromosome and multiple X chromosomes, giving them a karyotype of XXY. These persons are considered male. Atypical genetic recombination during crossover, when a sperm cell is developing, can result in karyotypes that do not match their phenotypic expression. Most of the time, when a developing sperm cell undergoes crossover during meiosis, the SRY gene stays on the Y chromosome. If the SRY gene is transferred to the X chromosome instead of staying on the Y chromosome, testis development will no longer occur. This is known as Swyer syndrome, characterized by an XY karyotype and a female phenotype. Individuals who have this syndrome have normally formed uteri and fallopian tubes, but the gonads are not functional. Swyer syndrome individuals are generally raised as females and have a female gender identity. On the other spectrum,
XX male syndrome XX male syndrome, also known as de la Chapelle syndrome, is a rare congenital intersex condition in which an individual with a 46, XX karyotype (otherwise associated with females) has phenotypically male characteristics that can vary among cases. ...
occurs when a body has female chromosomes and SRY attaches to one of them through translocation. People with XX male syndrome have female karyotype but male physical features. Individuals with either of these syndromes can experience delayed puberty, infertility, and growth features of the opposite sex they identify with. XX male syndrome expressers may develop breasts, and those with Swyer syndrome may have facial hair. While the presence or absence of SRY has generally determined whether or not testis development occurs, it has been suggested that there are other factors that affect the functionality of SRY. Therefore, there are individuals who have the SRY gene, but still develop as females, either because the gene itself is defective or mutated, or because one of the contributing factors is defective. This can happen in individuals exhibiting a XY, XXY, or XX SRY-positive karyotype. Additionally, other sex determining systems that rely on SRY/TDF beyond XY are the processes that come after SRY is present or absent in the development of an embryo. In a normal system, if SRY is present for XY, the TDF will activate the medulla to develop gonads into testes. Testosterone will then be produced and initiate the development of other male sexual characteristics. Comparably, if SRY is not present for XX, there will be a lack of the TDF based on no Y chromosome. The lack of TDF will allow the cortex of embryonic gonads to develop in to ovaries, which will then produce estrogen, and lead to the development of other female sexual characteristics.


Role in other diseases

SRY has been shown to
interact Advocates for Informed Choice, dba interACT or interACT Advocates for Intersex Youth, is a 501(c)(3) nonprofit organization using innovative strategies to advocate for the legal and human rights of children with intersex traits. The organizat ...
with the androgen receptor and individuals with XY karyotype and a functional SRY gene can have an outwardly female phenotype due to an underlying
androgen insensitivity syndrome Androgen insensitivity syndrome (AIS) is a difference in sex development involving hormonal resistance due to androgen receptor dysfunction. It affects 1 in 20,000 to 64,000 XY (karyotype, karyotypically male) births. The condition results in the ...
(AIS). Individuals with AIS are unable to respond to androgens properly due to a defect in their androgen receptor gene, and affected individuals can have complete or partial AIS. SRY has also been linked to the fact that males are more likely than females to develop
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 8 ...
-related diseases such as
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social wi ...
and
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
. SRY encodes a protein that controls the concentration of dopamine, the neurotransmitter that carries signals from the brain that control movement and coordination. Research in mice has shown that a mutation in SOX10, an SRY encoded transcription factor, is linked to the condition of Dominant megacolon in mice. This mouse model is being used to investigate the link between SRY and
Hirschsprung disease Hirschsprung's disease (HD or HSCR) is a birth defect in which nerves are missing from parts of the intestine. The most prominent symptom is constipation. Other symptoms may include vomiting, abdominal pain, diarrhea and slow growth. Symptoms usua ...
, or congenital megacolon in humans. There is also a link between SRY encoded transcription factor SOX9 and
campomelic dysplasia Campomelic dysplasia (CMD) is a genetic disorder characterized by bowing of the long bones and many other skeletal and extraskeletal features. It can be lethal in the neonatal period due to respiratory insufficiency, but the severity of the diseas ...
(CD). This missense mutation causes defective
chondrogenesis Chondrogenesis is the process by which cartilage is developed. Cartilage in fetal development In embryogenesis, the skeletal system is derived from the mesoderm germ layer. Chondrification (also known as chondrogenesis) is the process by which ...
, or the process of cartilage formation, and manifests as skeletal CD. Two thirds of 46,XY individuals diagnosed with CD have fluctuating amounts of male-to-female sex reversal.


Use in Olympic screening

One of the most controversial uses of this discovery was as a means for gender verification at the
Olympic Games The modern Olympic Games or Olympics (french: link=no, Jeux olympiques) are the leading international sporting events featuring summer and winter sports competitions in which thousands of athletes from around the world participate in a multi ...
, under a system implemented by the
International Olympic Committee The International Olympic Committee (IOC; french: link=no, Comité international olympique, ''CIO'') is a non-governmental sports organisation based in Lausanne, Switzerland. It is constituted in the form of an association under the Swis ...
in 1992. Athletes with an SRY gene were not permitted to participate as females, although all athletes in whom this was "detected" at the 1996 Summer Olympics were ruled
false positive A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test resul ...
s and were not disqualified. Specifically, eight female participants (out of a total of 3387) at these games were found to have the SRY gene. However, after further investigation of their genetic conditions, all these athletes were verified as female and allowed to compete. These athletes were found to have either partial or full
androgen insensitivity Androgen insensitivity syndrome (AIS) is a difference in sex development involving hormonal resistance due to androgen receptor dysfunction. It affects 1 in 20,000 to 64,000 XY ( karyotypically male) births. The condition results in the partial ...
, despite having an SRY gene, making them phenotypically female. In the late 1990s, a number of relevant professional societies in United States called for elimination of gender verification, including the
American Medical Association The American Medical Association (AMA) is a professional association and lobbying group of physicians and medical students. Founded in 1847, it is headquartered in Chicago, Illinois. Membership was approximately 240,000 in 2016. The AMA's stat ...
, stating that the method used was uncertain and ineffective. Chromosomal screening was eliminated as of the
2000 Summer Olympics The 2000 Summer Olympics, officially the Games of the XXVII Olympiad and also known as Sydney 2000 ( Dharug: ''Gadigal 2000''), the Millennium Olympic Games or the Games of the New Millennium, was an international multi-sport event held from ...
, but this was later followed by other forms of testing based on hormone levels.


Ongoing research

Despite the progress made during the past several decades in the study of sex determination, the SRY gene, and the TDF protein, work is still being done to further our understanding in these areas. There remain factors that need to be identified in the sex-determining molecular network, and the chromosomal changes involved in many other human sex-reversal cases are still unknown. Scientists continue to search for additional sex-determining genes, using techniques such as
microarray A microarray is a multiplex lab-on-a-chip. Its purpose is to simultaneously detect the expression of thousands of genes from a sample (e.g. from a tissue). It is a two-dimensional array on a solid substrate—usually a glass slide or silic ...
screening of the genital ridge genes at varying developmental stages, mutagenesis screens in mice for sex-reversal phenotypes, and identifying the genes that transcription factors act on using
chromatin immunoprecipitation Chromatin immunoprecipitation (ChIP) is a type of immunoprecipitation experimental technique used to investigate the interaction between proteins and DNA in the cell. It aims to determine whether specific proteins are associated with specific genom ...
.


See also

*
Sex-determination system A sex-determination system is a biological system that determines the development of sexual characteristics in an organism. Most organisms that create their offspring using sexual reproduction have two sexes. In some species there are hermap ...


References


Further reading

* * * * * * * * * * * * * * * * * * * *


External links


GeneReviews/NCBI/NIH/UW entry on 46,XX Testicular Disorder of Sex Development

OMIM entries on 46,XX Testicular Disorder of Sex Development
* *
PDBe-KB
provides an overview of all the structure information available in the PDB for Human Sex-determining region Y protein {{DEFAULTSORT:Testis Determining Factor Transcription factors Epigenetics Sex-determination systems