HOME

TheInfoList



OR:

The derivatives of scalars, vectors, and second-order
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
s with respect to second-order tensors are of considerable use in
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a ''continuous medium'' (also called a ''continuum'') rather than as discrete particles. Continuum mec ...
. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of
algorithms In mathematics and computer science, an algorithm () is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for per ...
for numerical simulations. The
directional derivative In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. The directional derivative of a multivariable differentiable (scalar) function along a given vect ...
provides a systematic way of finding these derivatives.


Derivatives with respect to vectors and second-order tensors

The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.


Derivatives of scalar valued functions of vectors

Let ''f''(v) be a real valued function of the vector v. Then the derivative of ''f''(v) with respect to v (or at v) is the vector defined through its
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
with any vector u being \frac\cdot\mathbf = Df(\mathbf) mathbf= \left frac~f(\mathbf + \alpha~\mathbf)\right for all vectors u. The above dot product yields a scalar, and if u is a unit vector gives the directional derivative of ''f'' at v, in the u direction. Properties: # If f(\mathbf) = f_1(\mathbf) + f_2(\mathbf) then \frac\cdot\mathbf = \left(\frac + \frac\right)\cdot\mathbf # If f(\mathbf) = f_1(\mathbf)~ f_2(\mathbf) then \frac\cdot\mathbf = \left(\frac \cdot \mathbf \right)~f_2(\mathbf) + f_1(\mathbf)~\left(\frac\cdot\mathbf \right) # If f(\mathbf) = f_1(f_2(\mathbf)) then \frac\cdot\mathbf = \frac~\frac\cdot\mathbf


Derivatives of vector valued functions of vectors

Let f(v) be a vector valued function of the vector v. Then the derivative of f(v) with respect to v (or at v) is the second order tensor defined through its dot product with any vector u being \frac\cdot\mathbf = D\mathbf(\mathbf) mathbf= \left frac~\mathbf(\mathbf + \alpha~\mathbf ) \right for all vectors u. The above dot product yields a vector, and if u is a unit vector gives the direction derivative of f at v, in the directional u. Properties: # If \mathbf(\mathbf) = \mathbf_1(\mathbf) + \mathbf_2(\mathbf) then \frac\cdot\mathbf = \left(\frac + \frac\right)\cdot\mathbf # If \mathbf(\mathbf) = \mathbf_1(\mathbf)\times\mathbf_2(\mathbf) then \frac\cdot\mathbf = \left(\frac\cdot\mathbf\right)\times\mathbf_2(\mathbf) + \mathbf_1(\mathbf)\times\left(\frac\cdot\mathbf \right) # If \mathbf(\mathbf) = \mathbf_1(\mathbf_2(\mathbf)) then \frac\cdot\mathbf = \frac\cdot\left(\frac\cdot\mathbf \right)


Derivatives of scalar valued functions of second-order tensors

Let f(\boldsymbol) be a real valued function of the second order tensor \boldsymbol. Then the derivative of f(\boldsymbol) with respect to \boldsymbol (or at \boldsymbol) in the direction \boldsymbol is the second order tensor defined as \frac:\boldsymbol = Df(\boldsymbol) boldsymbol= \left frac~f(\boldsymbol + \alpha~\boldsymbol)\right for all second order tensors \boldsymbol. Properties: # If f(\boldsymbol) = f_1(\boldsymbol) + f_2(\boldsymbol) then \frac:\boldsymbol = \left(\frac + \frac\right):\boldsymbol # If f(\boldsymbol) = f_1(\boldsymbol)~ f_2(\boldsymbol) then \frac:\boldsymbol = \left(\frac:\boldsymbol\right)~f_2(\boldsymbol) + f_1(\boldsymbol)~\left(\frac:\boldsymbol \right) # If f(\boldsymbol) = f_1(f_2(\boldsymbol)) then \frac:\boldsymbol = \frac~\left(\frac:\boldsymbol \right)


Derivatives of tensor valued functions of second-order tensors

Let \boldsymbol(\boldsymbol) be a second order tensor valued function of the second order tensor \boldsymbol. Then the derivative of \boldsymbol(\boldsymbol) with respect to \boldsymbol (or at \boldsymbol) in the direction \boldsymbol is the fourth order tensor defined as \frac:\boldsymbol = D\boldsymbol(\boldsymbol) boldsymbol= \left frac~\boldsymbol(\boldsymbol + \alpha~\boldsymbol)\right for all second order tensors \boldsymbol. Properties: # If \boldsymbol(\boldsymbol) = \boldsymbol_1(\boldsymbol) + \boldsymbol_2(\boldsymbol) then \frac:\boldsymbol = \left(\frac + \frac\right):\boldsymbol # If \boldsymbol(\boldsymbol) = \boldsymbol_1(\boldsymbol)\cdot\boldsymbol_2(\boldsymbol) then \frac:\boldsymbol = \left(\frac:\boldsymbol\right)\cdot\boldsymbol_2(\boldsymbol) + \boldsymbol_1 (\boldsymbol) \cdot\left(\frac:\boldsymbol \right) # If \boldsymbol(\boldsymbol) = \boldsymbol_1(\boldsymbol_2(\boldsymbol)) then \frac:\boldsymbol = \frac:\left(\frac:\boldsymbol \right) # If f(\boldsymbol) = f_1(\boldsymbol_2(\boldsymbol)) then \frac:\boldsymbol = \frac:\left(\frac:\boldsymbol \right)


Gradient of a tensor field

The
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
, \boldsymbol\boldsymbol, of a tensor field \boldsymbol(\mathbf) in the direction of an arbitrary constant vector c is defined as: \boldsymbol\boldsymbol\cdot\mathbf = \lim_ \quad \cfrac~\boldsymbol(\mathbf+\alpha\mathbf) The gradient of a tensor field of order ''n'' is a tensor field of order ''n''+1.


Cartesian coordinates

If \mathbf_1,\mathbf_2,\mathbf_3 are the basis vectors in a Cartesian coordinate system, with coordinates of points denoted by (x_1, x_2, x_3), then the gradient of the tensor field \boldsymbol is given by \boldsymbol\boldsymbol = \cfrac \otimes \mathbf_i Since the basis vectors do not vary in a Cartesian coordinate system we have the following relations for the gradients of a scalar field \phi, a vector field v, and a second-order tensor field \boldsymbol. \begin \boldsymbol\phi & = \cfrac~\mathbf_i = \phi_ ~\mathbf_i \\ \boldsymbol\mathbf & = \cfrac\otimes\mathbf_i = \cfrac~\mathbf_j\otimes\mathbf_i = v_~\mathbf_j\otimes\mathbf_i \\ \boldsymbol\boldsymbol & = \cfrac\otimes\mathbf_i = \cfrac~\mathbf_j\otimes\mathbf_k\otimes\mathbf_i = S_~\mathbf_j\otimes\mathbf_k\otimes\mathbf_i \end


Curvilinear coordinates

If \mathbf^1,\mathbf^2,\mathbf^3 are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (\xi^1, \xi^2, \xi^3), then the gradient of the tensor field \boldsymbol is given by \boldsymbol\boldsymbol = \frac\otimes\mathbf^i From this definition we have the following relations for the gradients of a scalar field \phi, a vector field v, and a second-order tensor field \boldsymbol. \begin \boldsymbol\phi & = \frac~\mathbf^i \\ .2ex \boldsymbol\mathbf & = \frac\otimes\mathbf^i \\ &= \left(\frac + v^k~\Gamma_^j\right)~\mathbf_j\otimes\mathbf^i = \left(\frac - v_k~\Gamma_^k\right)~\mathbf^j\otimes\mathbf^i \\ .2ex \boldsymbol\boldsymbol & = \frac\otimes\mathbf^i \\ &= \left(\frac - S_~\Gamma_^l - S_~\Gamma_^l\right)~\mathbf^j\otimes\mathbf^k\otimes\mathbf^i \end where the Christoffel symbol \Gamma_^k is defined using \Gamma_^k~\mathbf_k = \frac \quad \implies \quad \Gamma_^k = \frac\cdot\mathbf^k = -\mathbf_i\cdot\frac


Cylindrical polar coordinates

In cylindrical coordinates, the gradient is given by \begin \boldsymbol\phi =\quad &\frac~\mathbf_r + \frac~\frac~\mathbf_\theta + \frac~\mathbf_z \\ \end \begin \boldsymbol\mathbf =\quad &\frac~\mathbf_r \otimes \mathbf_r + \frac\left(\frac - v_\theta\right)~\mathbf_r \otimes \mathbf_\theta + \frac~\mathbf_r \otimes \mathbf_z \\ + &\frac~\mathbf_\theta \otimes \mathbf_r + \frac\left(\frac + v_r\right)~\mathbf_\theta \otimes \mathbf_\theta + \frac~\mathbf_\theta \otimes \mathbf_z \\ + &\frac~\mathbf_z\otimes\mathbf_r + \frac\frac~\mathbf_z \otimes\mathbf_\theta + \frac~\mathbf_z\otimes\mathbf_z \\ \end \begin \boldsymbol\boldsymbol =\quad &\frac~\mathbf_r\otimes\mathbf_r\otimes\mathbf_r + \frac~\mathbf_r \otimes \mathbf_r \otimes \mathbf_z + \frac\left frac - (S_ + S_)\right\mathbf_r \otimes \mathbf_r\otimes\mathbf_\theta \\ + &\frac~\mathbf_r \otimes \mathbf_\theta \otimes \mathbf_r + \frac~\mathbf_r \otimes \mathbf_\theta \otimes \mathbf_z + \frac\left frac + (S_ - S_)\right\mathbf_r \otimes \mathbf_\theta \otimes \mathbf_\theta \\ + &\frac~\mathbf_r \otimes \mathbf_z \otimes \mathbf_r + \frac~\mathbf_r \otimes \mathbf_z \otimes \mathbf_z + \frac\left frac - S_\right\mathbf_r \otimes \mathbf_z \otimes \mathbf_\theta \\ + &\frac~\mathbf_\theta \otimes \mathbf_r \otimes \mathbf_r + \frac~\mathbf_\theta \otimes \mathbf_r \otimes \mathbf_z + \frac\left frac + (S_ - S_)\right\mathbf_\theta \otimes \mathbf_r \otimes \mathbf_\theta \\ + &\frac~\mathbf_\theta \otimes \mathbf_\theta \otimes \mathbf_r + \frac~\mathbf_\theta \otimes \mathbf_\theta \otimes \mathbf_z + \frac\left frac + (S_ + S_)\right\mathbf_\theta \otimes \mathbf_\theta \otimes \mathbf_\theta \\ + &\frac~\mathbf_\theta \otimes \mathbf_z \otimes \mathbf_r + \frac~\mathbf_\theta \otimes \mathbf_z \otimes \mathbf_z + \frac\left frac + S_\right\mathbf_\theta \otimes \mathbf_z \otimes \mathbf_\theta \\ + &\frac~\mathbf_z \otimes \mathbf_r \otimes \mathbf_r + \frac~\mathbf_z \otimes \mathbf_r \otimes \mathbf_z + \frac\left frac - S_\right\mathbf_z \otimes \mathbf_r \otimes \mathbf_\theta \\ + &\frac~\mathbf_z \otimes \mathbf_\theta \otimes \mathbf_r + \frac~\mathbf_z \otimes \mathbf_\theta \otimes \mathbf_z + \frac\left frac + S_\right\mathbf_z \otimes \mathbf_\theta \otimes \mathbf_\theta \\ + &\frac~\mathbf_z \otimes \mathbf_z \otimes \mathbf_r + \frac~\mathbf_z \otimes \mathbf_z \otimes \mathbf_z + \frac~\frac~ \mathbf_z \otimes \mathbf_z \otimes \mathbf_\theta \end


Divergence of a tensor field

The
divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the rate that the vector field alters the volume in an infinitesimal neighborhood of each point. (In 2D this "volume" refers to ...
of a tensor field \boldsymbol(\mathbf) is defined using the recursive relation (\boldsymbol\cdot\boldsymbol)\cdot\mathbf = \boldsymbol\cdot\left(\mathbf\cdot\boldsymbol^\textsf\right) ~;\qquad \boldsymbol\cdot\mathbf = \text(\boldsymbol\mathbf) where c is an arbitrary constant vector and v is a vector field. If \boldsymbol is a tensor field of order ''n'' > 1 then the divergence of the field is a tensor of order ''n''− 1.


Cartesian coordinates

In a Cartesian coordinate system we have the following relations for a vector field v and a second-order tensor field \boldsymbol. \begin \boldsymbol\cdot\mathbf &= \frac = v_ \\ \boldsymbol\cdot\boldsymbol &= \frac~\mathbf_k = S_~\mathbf_k \end where tensor index notation for partial derivatives is used in the rightmost expressions. Note that \boldsymbol\cdot\boldsymbol \neq \boldsymbol\cdot\boldsymbol^\textsf. For a symmetric second-order tensor, the divergence is also often written as \begin \boldsymbol\cdot\boldsymbol &= \cfrac~\mathbf_k = S_~\mathbf_k \end The above expression is sometimes used as the definition of \boldsymbol\cdot\boldsymbol in Cartesian component form (often also written as \operatorname\boldsymbol). Note that such a definition is not consistent with the rest of this article (see the section on curvilinear co-ordinates). The difference stems from whether the differentiation is performed with respect to the rows or columns of \boldsymbol, and is conventional. This is demonstrated by an example. In a Cartesian coordinate system the second order tensor (matrix) \mathbf is the gradient of a vector function \mathbf. \begin \boldsymbol \cdot \left( \boldsymbol \mathbf \right) &= \boldsymbol \cdot \left( v_ ~\mathbf_i \otimes \mathbf_j \right) = v_ ~\mathbf_i \cdot \mathbf_i \otimes \mathbf_j = \left( \boldsymbol \cdot \mathbf \right)_ ~\mathbf_j = \boldsymbol \left( \boldsymbol \cdot \mathbf \right) \\ \boldsymbol \cdot \left \left( \boldsymbol \mathbf \right)^\textsf \right&= \boldsymbol \cdot \left( v_ ~\mathbf_i \otimes \mathbf_j \right) = v_ ~\mathbf_i \cdot \mathbf_i \otimes \mathbf_j = \boldsymbol^ v_ ~\mathbf_j = \boldsymbol^ \mathbf \end The last equation is equivalent to the alternative definition / interpretation \begin \left( \boldsymbol \cdot \right)_\text \left( \boldsymbol \mathbf \right) = \left( \boldsymbol \cdot \right)_\text \left( v_ ~\mathbf_i \otimes \mathbf_j \right) = v_ ~\mathbf_i \otimes \mathbf_j \cdot \mathbf_j = \boldsymbol^2 v_i ~\mathbf_i = \boldsymbol^2 \mathbf \end


Curvilinear coordinates

In curvilinear coordinates, the divergences of a vector field v and a second-order tensor field \boldsymbol are \begin \boldsymbol\cdot\mathbf &= \left(\cfrac + v^k~\Gamma_^i\right)\\ \boldsymbol\cdot\boldsymbol &= \left(\cfrac- S_~\Gamma_^l - S_~\Gamma_^l\right)~\mathbf^k \end More generally, \begin \boldsymbol\cdot\boldsymbol & = \left cfrac - \Gamma^l_~S_ - \Gamma^l_~S_\rightg^~\mathbf^j \\ pt & = \left cfrac + \Gamma^i_~S^ + \Gamma^j_~S^\right\mathbf_j \\ pt & = \left cfrac + \Gamma^i_~S^l_ - \Gamma^l_~S^i_\right\mathbf^j \\ pt & = \left cfrac - \Gamma^l_~S_l^ + \Gamma^j_~S_i^\rightg^~\mathbf_j \end


Cylindrical polar coordinates

In cylindrical polar coordinates \begin \boldsymbol\cdot\mathbf =\quad &\frac + \frac\left(\frac + v_r \right) + \frac\\ \boldsymbol\cdot\boldsymbol =\quad &\frac~\mathbf_r + \frac~\mathbf_\theta + \frac~\mathbf_z \\ + &\frac\left frac + (S_ - S_)\right\mathbf_r + \frac\left frac + (S_ + S_)\right\mathbf_\theta + \frac\left frac + S_\right\mathbf_z \\ + &\frac~\mathbf_r + \frac~\mathbf_\theta + \frac~\mathbf_z \end


Curl of a tensor field

The curl of an order-''n'' > 1 tensor field \boldsymbol(\mathbf) is also defined using the recursive relation (\boldsymbol\times\boldsymbol)\cdot\mathbf = \boldsymbol\times(\mathbf\cdot\boldsymbol) ~;\qquad (\boldsymbol\times\mathbf)\cdot\mathbf = \boldsymbol\cdot(\mathbf\times\mathbf) where c is an arbitrary constant vector and v is a vector field.


Curl of a first-order tensor (vector) field

Consider a vector field v and an arbitrary constant vector c. In index notation, the cross product is given by \mathbf \times \mathbf = \varepsilon_~v_j~c_k~\mathbf_i where \varepsilon_ is the permutation symbol, otherwise known as the Levi-Civita symbol. Then, \boldsymbol\cdot(\mathbf \times \mathbf) = \varepsilon_~v_~c_k = (\varepsilon_~v_~\mathbf_k)\cdot\mathbf = (\boldsymbol\times\mathbf)\cdot\mathbf Therefore, \boldsymbol\times\mathbf = \varepsilon_~v_~\mathbf_k


Curl of a second-order tensor field

For a second-order tensor \boldsymbol \mathbf\cdot\boldsymbol = c_m~S_~\mathbf_j Hence, using the definition of the curl of a first-order tensor field, \boldsymbol\times(\mathbf\cdot\boldsymbol) = \varepsilon_~c_m~S_~\mathbf_k = (\varepsilon_~S_~\mathbf_k\otimes\mathbf_m)\cdot\mathbf = (\boldsymbol\times\boldsymbol) \cdot \mathbf Therefore, we have \boldsymbol\times\boldsymbol = \varepsilon_~S_~\mathbf_k\otimes\mathbf_m


Identities involving the curl of a tensor field

The most commonly used identity involving the curl of a tensor field, \boldsymbol, is \boldsymbol\times(\boldsymbol\boldsymbol) = \boldsymbol This identity holds for tensor fields of all orders. For the important case of a second-order tensor, \boldsymbol, this identity implies that \boldsymbol\times(\boldsymbol\boldsymbol) = \boldsymbol \quad \implies \quad S_ - S_ = 0


Derivative of the determinant of a second-order tensor

The derivative of the determinant of a second order tensor \boldsymbol is given by \frac\det(\boldsymbol) = \det(\boldsymbol)~\left boldsymbol^\right\textsf ~. In an orthonormal basis, the components of \boldsymbol can be written as a matrix A. In that case, the right hand side corresponds the cofactors of the matrix.


Derivatives of the invariants of a second-order tensor

The principal invariants of a second order tensor are \begin I_1(\boldsymbol) & = \text \\ I_2(\boldsymbol) & = \tfrac \left (\text)^2 - \text \right\\ I_3(\boldsymbol) & = \det(\boldsymbol) \end The derivatives of these three invariants with respect to \boldsymbol are \begin \frac & = \boldsymbol \\ pt \frac & = I_1 \, \boldsymbol - \boldsymbol^\textsf \\ pt \frac & = \det(\boldsymbol)~\left boldsymbol^\right\textsf \\ &= I_2~\boldsymbol - \boldsymbol^\textsf~\left(I_1~\boldsymbol - \boldsymbol^\textsf\right) = \left(\boldsymbol^2 - I_1~\boldsymbol + I_2~\boldsymbol\right)^\textsf \end = \det(\boldsymbol)~\left boldsymbol^\right\textsf ~. For the derivatives of the other two invariants, let us go back to the characteristic equation \det(\lambda~\boldsymbol + \boldsymbol) = \lambda^3 + I_1(\boldsymbol)~\lambda^2 + I_2(\boldsymbol)~\lambda + I_3(\boldsymbol) ~. Using the same approach as for the determinant of a tensor, we can show that \frac\det(\lambda~\boldsymbol + \boldsymbol) = \det(\lambda~\boldsymbol + \boldsymbol)~\left \lambda~\boldsymbol + \boldsymbol)^\right\textsf ~. Now the left hand side can be expanded as \begin \frac\det(\lambda~\boldsymbol + \boldsymbol) & = \frac\left \lambda^3 + I_1(\boldsymbol)~\lambda^2 + I_2(\boldsymbol)~\lambda + I_3(\boldsymbol) \right\\ & = \frac~\lambda^2 + \frac~\lambda + \frac~. \end Hence \frac~\lambda^2 + \frac~\lambda + \frac = \det(\lambda~\boldsymbol + \boldsymbol)~\left \lambda~\boldsymbol + \boldsymbol)^\right\textsf or, (\lambda~\boldsymbol + \boldsymbol)^\textsf\cdot\left \frac~\lambda^2 + \frac~\lambda + \frac\right= \det(\lambda~\boldsymbol + \boldsymbol)~\boldsymbol ~. Expanding the right hand side and separating terms on the left hand side gives \left(\lambda~\boldsymbol +\boldsymbol^\textsf\right)\cdot\left \frac~\lambda^2 + \frac~\lambda + \frac\right= \left lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right \boldsymbol or, \begin \left frac~\lambda^3 \right.& \left.+ \frac~\lambda^2 + \frac~\lambda\rightboldsymbol + \boldsymbol^\textsf\cdot\frac~\lambda^2 + \boldsymbol^\textsf\cdot\frac~\lambda + \boldsymbol^\textsf\cdot\frac \\ & = \left lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right \boldsymbol ~. \end If we define I_0 := 1 and I_4 := 0, we can write the above as \begin \left frac~\lambda^3 \right.& \left.+ \frac~\lambda^2 + \frac~\lambda + \frac\rightboldsymbol + \boldsymbol^\textsf\cdot\frac~\lambda^3 + \boldsymbol^\textsf\cdot\frac~\lambda^2 + \boldsymbol^\textsf\cdot\frac~\lambda + \boldsymbol^\textsf\cdot\frac \\ &= \left _0~\lambda^3 + I_1~\lambda^2 + I_2~\lambda + I_3\right \boldsymbol ~. \end Collecting terms containing various powers of λ, we get \begin \lambda^3&\left(I_0~\boldsymbol - \frac~\boldsymbol - \boldsymbol^\textsf\cdot\frac\right) + \lambda^2\left(I_1~\boldsymbol - \frac~\boldsymbol - \boldsymbol^\textsf\cdot\frac\right) + \\ &\qquad \qquad\lambda\left(I_2~\boldsymbol - \frac~\boldsymbol - \boldsymbol^\textsf\cdot\frac\right) + \left(I_3~\boldsymbol - \frac~\boldsymbol - \boldsymbol^\textsf\cdot\frac\right) = 0 ~. \end Then, invoking the arbitrariness of λ, we have \begin I_0~\boldsymbol - \frac~\boldsymbol - \boldsymbol^\textsf\cdot\frac & = 0 \\ I_1~\boldsymbol - \frac~\boldsymbol - I_2~\boldsymbol - \frac~\boldsymbol - \boldsymbol^\textsf\cdot\frac & = 0 \\ I_3~\boldsymbol - \frac~\boldsymbol - \boldsymbol^\textsf\cdot\frac & = 0 ~. \end This implies that \begin \frac &= \boldsymbol \\ \frac & = I_1~\boldsymbol - \boldsymbol^\textsf \\ \frac & = I_2~\boldsymbol - \boldsymbol^\textsf~\left(I_1~\boldsymbol - \boldsymbol^\textsf\right) = \left(\boldsymbol^2 -I_1~\boldsymbol + I_2~\boldsymbol\right)^\textsf \end


Derivative of the second-order identity tensor

Let \boldsymbol be the second order identity tensor. Then the derivative of this tensor with respect to a second order tensor \boldsymbol is given by \frac:\boldsymbol = \boldsymbol:\boldsymbol = \boldsymbol This is because \boldsymbol is independent of \boldsymbol.


Derivative of a second-order tensor with respect to itself

Let \boldsymbol be a second order tensor. Then \frac:\boldsymbol = \left frac (\boldsymbol + \alpha~\boldsymbol)\right = \boldsymbol = \boldsymbol:\boldsymbol Therefore, \frac = \boldsymbol Here \boldsymbol is the fourth order identity tensor. In index notation with respect to an orthonormal basis \boldsymbol = \delta_~\delta_~\mathbf_i\otimes\mathbf_j\otimes\mathbf_k\otimes\mathbf_l This result implies that \frac:\boldsymbol = \boldsymbol^\textsf:\boldsymbol = \boldsymbol^\textsf where \boldsymbol^\textsf = \delta_~\delta_~\mathbf_i\otimes\mathbf_j\otimes\mathbf_k\otimes\mathbf_l Therefore, if the tensor \boldsymbol is symmetric, then the derivative is also symmetric and we get \frac = \boldsymbol^ = \frac~\left(\boldsymbol + \boldsymbol^\textsf\right) where the symmetric fourth order identity tensor is \boldsymbol^ = \frac~(\delta_~\delta_ + \delta_~\delta_) ~\mathbf_i\otimes\mathbf_j\otimes\mathbf_k\otimes\mathbf_l


Derivative of the inverse of a second-order tensor

Let \boldsymbol and \boldsymbol be two second order tensors, then \frac \left(\boldsymbol^\right) : \boldsymbol = - \boldsymbol^\cdot\boldsymbol\cdot\boldsymbol^ In index notation with respect to an orthonormal basis \frac~T_ = - A^_~T_~A^_ \implies \frac = - A^_~A^_ We also have \frac \left(\boldsymbol^\right) : \boldsymbol = - \boldsymbol^\cdot\boldsymbol^\textsf\cdot\boldsymbol^ In index notation \frac~T_ = - A^_~T_~A^_ \implies \frac = - A^_~A^_ If the tensor \boldsymbol is symmetric then \frac = -\cfrac\left(A^_~A^_ + A^_~A^_\right) }:\boldsymbol = \boldsymbol Since \boldsymbol^\cdot\boldsymbol = \boldsymbol, we can write \frac\left(\boldsymbol^\cdot\boldsymbol\right):\boldsymbol = \boldsymbol Using the product rule for second order tensors \frac boldsymbol_1(\boldsymbol)\cdot\boldsymbol_2(\boldsymbol)\boldsymbol = \left(\frac:\boldsymbol\right)\cdot\boldsymbol_2 + \boldsymbol_1\cdot\left(\frac:\boldsymbol\right) we get \frac(\boldsymbol^\cdot\boldsymbol):\boldsymbol = \left(\frac:\boldsymbol\right)\cdot\boldsymbol + \boldsymbol^\cdot\left(\frac:\boldsymbol\right) = \boldsymbol or, \left(\frac:\boldsymbol\right)\cdot\boldsymbol = - \boldsymbol^\cdot\boldsymbol Therefore, \frac \left(\boldsymbol^\right) : \boldsymbol = - \boldsymbol^\cdot\boldsymbol\cdot\boldsymbol^


Integration by parts

Another important operation related to tensor derivatives in continuum mechanics is integration by parts. The formula for integration by parts can be written as \int_ \boldsymbol\otimes\boldsymbol\boldsymbol\,d\Omega = \int_ \mathbf \otimes (\boldsymbol\otimes\boldsymbol)\,d\Gamma - \int_ \boldsymbol\otimes\boldsymbol\boldsymbol\,d\Omega where \boldsymbol and \boldsymbol are differentiable tensor fields of arbitrary order, \mathbf is the unit outward normal to the domain over which the tensor fields are defined, \otimes represents a generalized tensor product operator, and \boldsymbol is a generalized gradient operator. When \boldsymbol is equal to the identity tensor, we get the divergence theorem \int_\boldsymbol\boldsymbol\,d\Omega = \int_ \mathbf\otimes\boldsymbol\,d\Gamma \,. We can express the formula for integration by parts in Cartesian index notation as \int_ F_\,G_\,d\Omega = \int_ n_p\,F_\,G_\,d\Gamma - \int_ G_\,F_\,d\Omega \,. For the special case where the tensor product operation is a contraction of one index and the gradient operation is a divergence, and both \boldsymbol and \boldsymbol are second order tensors, we have \int_ \boldsymbol\cdot(\boldsymbol\cdot\boldsymbol)\,d\Omega = \int_ \mathbf\cdot\left(\boldsymbol\cdot\boldsymbol^\textsf\right)\,d\Gamma - \int_ (\boldsymbol\boldsymbol):\boldsymbol^\textsf\,d\Omega \,. evelina In index notation, \int_ F_\,G_\,d\Omega = \int_ n_p\,F_\,G_\,d\Gamma - \int_ G_\,F_\,d\Omega \,.


See also

*
Covariant derivative In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to: Statistics * Covariance matrix, a matrix of covariances between a number of variables * Covariance or cross-covariance between ...
* Ricci calculus


References

{{Reflist Solid mechanics Mechanics