HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is tangent to the curve at a point if the line passes through the point on the curve and has slope , where ''f'' is the derivative of ''f''. A similar definition applies to space curves and curves in ''n''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. The point where the tangent line and the curve meet or intersect is called the ''point of tangency''. The tangent line is said to be "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a '' tangent line approximation'', the graph of the affine function that best approximates the original function at the given point. Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the surface at that point. The concept of a tangent is one of the most fundamental notions in
differential geometry Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
and has been extensively generalized; . The word "tangent" comes from the
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
, "to touch".


History

Euclid makes several references to the tangent ( ''ephaptoménē'') to a circle in book III of the '' Elements'' (c. 300 BC). In Apollonius' work ''Conics'' (c. 225 BC) he defines a tangent as being ''a line such that no other straight line could fall between it and the curve''. Archimedes (c.  287 – c.  212 BC) found the tangent to an Archimedean spiral by considering the path of a point moving along the curve. In the 1630s
Fermat Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
developed the technique of adequality to calculate tangents and other problems in analysis and used this to calculate tangents to the parabola. The technique of adequality is similar to taking the difference between f(x+h) and f(x) and dividing by a power of h. Independently Descartes used his method of normals based on the observation that the radius of a circle is always normal to the circle itself. These methods led to the development of differential calculus in the 17th century. Many people contributed. Roberval discovered a general method of drawing tangents, by considering a curve as described by a moving point whose motion is the resultant of several simpler motions. René-François de Sluse and Johannes Hudde found algebraic algorithms for finding tangents. Further developments included those of John Wallis and Isaac Barrow, leading to the theory of Isaac Newton and
Gottfried Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Isaac Newton, Sir Isaac Newton, with the creation of calculus in ad ...
. An 1828 definition of a tangent was "a right line which touches a curve, but which when produced, does not cut it". This old definition prevents
inflection point In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph ...
s from having any tangent. It has been dismissed and the modern definitions are equivalent to those of
Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Sir Isaac Newton, with the creation of calculus in addition to many ...
, who defined the tangent line as the line through a pair of infinitely close points on the curve; in modern terminology, this is expressed as: the tangent to a curve at a point on the curve is the limit of the line passing through two points of the curve when these two points tends to .


Tangent line to a plane curve

The intuitive notion that a tangent line "touches" a curve can be made more explicit by considering the sequence of straight lines (
secant line In geometry, a secant is a line (geometry), line that intersects a curve at a minimum of two distinct Point (geometry), points.. The word ''secant'' comes from the Latin word ''secare'', meaning ''to cut''. In the case of a circle, a secant inter ...
s) passing through two points, ''A'' and ''B'', those that lie on the function curve. The tangent at ''A'' is the limit when point ''B'' approximates or tends to ''A''. The existence and uniqueness of the tangent line depends on a certain type of mathematical smoothness, known as "differentiability." For example, if two circular arcs meet at a sharp point (a vertex) then there is no uniquely defined tangent at the vertex because the limit of the progression of secant lines depends on the direction in which "point ''B''" approaches the vertex. At most points, the tangent touches the curve without crossing it (though it may, when continued, cross the curve at other places away from the point of tangent). A point where the tangent (at this point) crosses the curve is called an ''
inflection point In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (rarely inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of the graph ...
''.
Circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
s,
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactl ...
s,
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
s and
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
s do not have any inflection point, but more complicated curves do have, like the graph of a
cubic function In mathematics, a cubic function is a function of the form f(x)=ax^3+bx^2+cx+d, that is, a polynomial function of degree three. In many texts, the ''coefficients'' , , , and are supposed to be real numbers, and the function is considered as ...
, which has exactly one inflection point, or a sinusoid, which has two inflection points per each period of the
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite th ...
. Conversely, it may happen that the curve lies entirely on one side of a straight line passing through a point on it, and yet this straight line is not a tangent line. This is the case, for example, for a line passing through the vertex of a
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
and not intersecting it otherwise—where the tangent line does not exist for the reasons explained above. In
convex geometry In mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of num ...
, such lines are called supporting lines.


Analytical approach

The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
in the 17th century. In the second book of his ''
Geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
'',
René Descartes René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
said of the problem of constructing the tangent to a curve, "And I dare say that this is not only the most useful and most general problem in geometry that I know, but even that I have ever desired to know".


Intuitive description

Suppose that a curve is given as the graph of a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
, ''y'' = ''f''(''x''). To find the tangent line at the point ''p'' = (''a'', ''f''(''a'')), consider another nearby point ''q'' = (''a'' + ''h'', ''f''(''a'' + ''h'')) on the curve. The slope of the
secant line In geometry, a secant is a line (geometry), line that intersects a curve at a minimum of two distinct Point (geometry), points.. The word ''secant'' comes from the Latin word ''secare'', meaning ''to cut''. In the case of a circle, a secant inter ...
passing through ''p'' and ''q'' is equal to the
difference quotient In single-variable calculus, the difference quotient is usually the name for the expression : \frac which when taken to the Limit of a function, limit as ''h'' approaches 0 gives the derivative of the Function (mathematics), function ''f''. The ...
\frac. As the point ''q'' approaches ''p'', which corresponds to making ''h'' smaller and smaller, the difference quotient should approach a certain limiting value ''k'', which is the slope of the tangent line at the point ''p''. If ''k'' is known, the equation of the tangent line can be found in the point-slope form: y-f(a) = k(x-a).\,


More rigorous description

To make the preceding reasoning rigorous, one has to explain what is meant by the difference quotient approaching a certain limiting value ''k''. The precise mathematical formulation was given by
Cauchy Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
in the 19th century and is based on the notion of limit. Suppose that the graph does not have a break or a sharp edge at ''p'' and it is neither plumb nor too wiggly near ''p''. Then there is a unique value of ''k'' such that, as ''h'' approaches 0, the difference quotient gets closer and closer to ''k'', and the distance between them becomes negligible compared with the size of ''h'', if ''h'' is small enough. This leads to the definition of the slope of the tangent line to the graph as the limit of the difference quotients for the function ''f''. This limit is the
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
of the function ''f'' at ''x'' = ''a'', denoted ''f'' ′(''a''). Using derivatives, the equation of the tangent line can be stated as follows: : y=f(a)+f'(a)(x-a).\, Calculus provides rules for computing the derivatives of functions that are given by formulas, such as the
power function In mathematics, exponentiation, denoted , is an operation involving two numbers: the ''base'', , and the ''exponent'' or ''power'', . When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, i ...
,
trigonometric functions In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
, exponential function,
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
, and their various combinations. Thus, equations of the tangents to graphs of all these functions, as well as many others, can be found by the methods of calculus.


How the method can fail

Calculus also demonstrates that there are functions and points on their graphs for which the limit determining the slope of the tangent line does not exist. For these points the function ''f'' is ''non-differentiable''. There are two possible reasons for the method of finding the tangents based on the limits and derivatives to fail: either the geometric tangent exists, but it is a vertical line, which cannot be given in the point-slope form since it does not have a slope, or the graph exhibits one of three behaviors that precludes a geometric tangent. The graph ''y'' = ''x''1/3 illustrates the first possibility: here the difference quotient at ''a'' = 0 is equal to ''h''1/3/''h'' = ''h''−2/3, which becomes very large as ''h'' approaches 0. This curve has a tangent line at the origin that is vertical. The graph ''y'' = ''x''2/3 illustrates another possibility: this graph has a ''
cusp A cusp is the most pointed end of a curve. It often refers to cusp (anatomy), a pointed structure on a tooth. Cusp or CUSP may also refer to: Mathematics * Cusp (singularity), a singular point of a curve * Cusp catastrophe, a branch of bifu ...
'' at the origin. This means that, when ''h'' approaches 0, the difference quotient at ''a'' = 0 approaches plus or minus infinity depending on the sign of ''x''. Thus both branches of the curve are near to the half vertical line for which ''y''=0, but none is near to the negative part of this line. Basically, there is no tangent at the origin in this case, but in some context one may consider this line as a tangent, and even, in
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, as a ''double tangent''. The graph ''y'' = , ''x'', of the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
function consists of two straight lines with different slopes joined at the origin. As a point ''q'' approaches the origin from the right, the secant line always has slope 1. As a point ''q'' approaches the origin from the left, the secant line always has slope −1. Therefore, there is no unique tangent to the graph at the origin. Having two different (but finite) slopes is called a ''corner''. Finally, since differentiability implies continuity, the
contrapositive In logic and mathematics, contraposition, or ''transposition'', refers to the inference of going from a Conditional sentence, conditional statement into its logically equivalent contrapositive, and an associated proof method known as . The contrap ...
states ''discontinuity'' implies non-differentiability. Any such jump or point discontinuity will have no tangent line. This includes cases where one slope approaches positive infinity while the other approaches negative infinity, leading to an infinite jump discontinuity


Equations

When the curve is given by ''y'' = ''f''(''x'') then the slope of the tangent is dy/dx, so by the point–slope formula the equation of the tangent line at (''X'', ''Y'') is :y-Y=\frac(X) \cdot (x-X) where (''x'', ''y'') are the coordinates of any point on the tangent line, and where the derivative is evaluated at x=X.Edwards Art. 191 When the curve is given by ''y'' = ''f''(''x''), the tangent line's equation can also be found by using
polynomial division In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, beca ...
to divide f \, (x) by (x-X)^2; if the remainder is denoted by g(x), then the equation of the tangent line is given by :y=g(x). When the equation of the curve is given in the form ''f''(''x'', ''y'') = 0 then the value of the slope can be found by
implicit differentiation In mathematics, an implicit equation is a relation of the form R(x_1, \dots, x_n) = 0, where is a function of several variables (often a polynomial). For example, the implicit equation of the unit circle is x^2 + y^2 - 1 = 0. An implicit func ...
, giving : \frac=-\frac \bigg/ \frac. The equation of the tangent line at a point (''X'',''Y'') such that ''f''(''X'',''Y'') = 0 is then : \frac(X,Y) \cdot (x-X) + \frac(X,Y) \cdot (y-Y) = 0. This equation remains true if :\frac(X,Y) = 0,\quad \frac(X,Y) \neq 0, in which case the slope of the tangent is infinite. If, however, : \frac(X,Y) = \frac(X,Y) = 0, the tangent line is not defined and the point (''X'',''Y'') is said to be
singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singula ...
. For
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
s, computations may be simplified somewhat by converting to homogeneous coordinates. Specifically, let the homogeneous equation of the curve be ''g''(''x'', ''y'', ''z'') = 0 where ''g'' is a homogeneous function of degree ''n''. Then, if (''X'', ''Y'', ''Z'') lies on the curve,
Euler's theorem In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if and are coprime positive integers, then a^ is congruent to 1 modulo , where \varphi denotes Euler's totient function; that ...
implies \frac \cdot X +\frac \cdot Y+\frac \cdot Z=ng(X, Y, Z)=0. It follows that the homogeneous equation of the tangent line is : \frac(X,Y,Z) \cdot x + \frac(X,Y,Z) \cdot y + \frac(X,Y,Z) \cdot z = 0. The equation of the tangent line in Cartesian coordinates can be found by setting ''z''=1 in this equation.Edwards Art. 192 To apply this to algebraic curves, write ''f''(''x'', ''y'') as :f=u_n+u_+\dots+u_1+u_0\, where each ''u''''r'' is the sum of all terms of degree ''r''. The homogeneous equation of the curve is then :g=u_n+u_z+\dots+u_1 z^+u_0 z^n=0.\, Applying the equation above and setting ''z''=1 produces :\frac(X,Y) \cdot x + \frac(X,Y) \cdot y + \frac(X,Y,1) =0 as the equation of the tangent line.Edwards Art. 193 The equation in this form is often simpler to use in practice since no further simplification is needed after it is applied. If the curve is given
parametrically A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
by :x=x(t),\quad y=y(t) then the slope of the tangent is : \frac = \frac \bigg/ \frac giving the equation for the tangent line at \, t=T, \, X=x(T), \, Y=y(T) asEdwards Art. 196 :\frac(T) \cdot (y-Y)=\frac(T) \cdot (x-X). If :\frac(T)= \frac(T) =0, the tangent line is not defined. However, it may occur that the tangent line exists and may be computed from an implicit equation of the curve.


Normal line to a curve

The line perpendicular to the tangent line to a curve at the point of tangency is called the ''normal line'' to the curve at that point. The slopes of perpendicular lines have product −1, so if the equation of the curve is ''y'' = ''f''(''x'') then slope of the normal line is :-1 \bigg/ \frac and it follows that the equation of the normal line at (X, Y) is :(x-X)+\frac(y-Y)=0. Similarly, if the equation of the curve has the form ''f''(''x'', ''y'') = 0 then the equation of the normal line is given byEdwards Art. 194 :\frac(x-X)-\frac(y-Y)=0. If the curve is given parametrically by :x=x(t),\quad y=y(t) then the equation of the normal line is :\frac(x-X)+\frac(y-Y)=0.


Angle between curves

The angle between two curves at a point where they intersect is defined as the angle between their tangent lines at that point. More specifically, two curves are said to be tangent at a point if they have the same tangent at a point, and orthogonal if their tangent lines are orthogonal.Edwards Art. 195


Multiple tangents at a point

The formulas above fail when the point is a singular point. In this case there may be two or more branches of the curve that pass through the point, each branch having its own tangent line. When the point is the origin, the equations of these lines can be found for algebraic curves by factoring the equation formed by eliminating all but the lowest degree terms from the original equation. Since any point can be made the origin by a change of variables (or by translating the curve) this gives a method for finding the tangent lines at any singular point. For example, the equation of the
limaçon trisectrix In geometry, a limaçon trisectrix is the name for the quartic plane curve that is a trisectrix that is specified as a limaçon. The shape of the limaçon trisectrix can be specified by other curves particularly as a rose (mathematics), rose, ...
shown to the right is :(x^2+y^2-2ax)^2=a^2(x^2+y^2).\, Expanding this and eliminating all but terms of degree 2 gives :a^2(3x^2-y^2)=0\, which, when factored, becomes :y=\pm\sqrtx. So these are the equations of the two tangent lines through the origin.Edwards Art. 197 When the curve is not self-crossing, the tangent at a reference point may still not be uniquely defined because the curve is not differentiable at that point although it is differentiable elsewhere. In this case the
left and right derivative In calculus, the notions of one-sided differentiability and semi-differentiability of a real-valued function ''f'' of a real variable are weaker than differentiability. Specifically, the function ''f'' is said to be right differentiable at a poin ...
s are defined as the limits of the derivative as the point at which it is evaluated approaches the reference point from respectively the left (lower values) or the right (higher values). For example, the curve ''y'' = , ''x'' , is not differentiable at ''x'' = 0: its left and right derivatives have respective slopes −1 and 1; the tangents at that point with those slopes are called the left and right tangents. Sometimes the slopes of the left and right tangent lines are equal, so the tangent lines coincide. This is true, for example, for the curve ''y'' = ''x'' 2/3, for which both the left and right derivatives at ''x'' = 0 are infinite; both the left and right tangent lines have equation ''x'' = 0.


Tangent line to a space curve


Tangent circles

Two distinct circles lying in the same plane are said to be ''tangent'' to each other if they meet at exactly one point. If points in the plane are described using
Cartesian coordinates In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
, then two
circles A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting t ...
, with radii r_1, r_2 and centers (x_1, y_1) and (x_2, y_2) are tangent to each other whenever :\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=\left(r_1\pm r_2\right)^2. The two circles are called ''externally tangent'' if the
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two co ...
between their centres is equal to the sum of their radii, :\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=\left(r_1 + r_2\right)^2. or ''internally tangent'' if the distance between their centres is equal to the difference between their radii: :\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=\left(r_1 - r_2\right)^2.


Tangent plane to a surface

The tangent plane to a
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
at a given point ''p'' is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at ''p'', and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to ''p'' as these points converge to ''p''. Mathematically, if the surface is given by a function z = f(x, y), the equation of the tangent plane at point (x_0, y_0, z_0) can be expressed as: z-z_0 = \frac(x_0, y_0)(x - x_0) + \frac(x_0, y_0)(y - y_0). Here, \frac and \frac are the partial derivatives of the function f with respect to x and y respectively, evaluated at the point (x_0, y_0). In essence, the tangent plane captures the local behavior of the surface at the specific point ''p''. It's a fundamental concept used in calculus and differential geometry, crucial for understanding how functions change locally on surfaces.


Higher-dimensional manifolds

More generally, there is a ''k''-dimensional
tangent space In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ...
at each point of a ''k''-dimensional
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
in the ''n''-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
.


See also

* Behavior of a polynomial function near a multiple root *
Newton's method In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a ...
*
Normal (geometry) In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the infinite straight line perpendicular to the tangent line to the ...
*
Osculating circle An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to unders ...
* Osculating curve *
Osculating plane In mathematics, particularly in differential geometry, an osculating plane is a plane in a Euclidean space or affine space which meets a submanifold at a point in such a way as to have a second order of contact at the point. The word ''oscu ...
*
Perpendicular In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
* Subtangent * Supporting line * Tangent at a point * Tangent cone *
Tangent lines to circles In Euclidean geometry, Euclidean plane geometry, a tangent line to a circle is a Line (geometry), line that touches the circle at exactly one Point (geometry), point, never entering the circle's interior. Tangent lines to circles form the subject ...
*
Tangent vector In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R''n''. More generally, tangent vectors are ...
* Tangential angle *
Tangential component In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the ...


References


Sources

*


External links

* *
Tangent to a circle
With interactive animation

— An interactive simulation {{Authority control Analytic geometry Elementary geometry Differential geometry Differential topology