Superionic Conductor
   HOME

TheInfoList



OR:

In materials science, fast ion conductors are
solid Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural ...
conductors with highly mobile
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s. These materials are important in the area of
solid state ionics Solid-state ionics is the study of ionic-electronic mixed conductor and fully ionic conductors ( solid electrolytes) and their uses. Some materials that fall into this category include inorganic crystalline and polycrystalline solids, ceramics, g ...
, and are also known as solid electrolytes and superionic conductors. These materials are useful in batteries and various sensors. Fast ion conductors are used primarily in
solid oxide fuel cell A solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte. A ...
s. As solid electrolytes they allow the movement of ions without the need for a liquid or soft membrane separating the electrodes. The phenomenon relies on the hopping of ions through an otherwise rigid
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns ...
.


Mechanism

Fast ion conductors are intermediate in nature between
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
line solids which possess a regular structure with immobile ions, and liquid electrolytes which have no regular structure and fully mobile ions. Solid electrolytes find use in all solid-state supercapacitors, batteries, and fuel cells, and in various kinds of chemical sensors.


Classification

In solid electrolytes (glasses or crystals), the ionic conductivity Ωi can be any value, but it should be much larger than the electronic one. Usually, solids where Ωi is on the order of 0.0001 to 0.1 Ohm−1 cm−1 (300 K) are called superionic conductors.


Proton conductors

Proton conductor A proton conductor is an electrolyte, typically a solid electrolyte, in which H+ are the primary charge carriers. Composition Acid solutions exhibit proton-conductivity, while pure proton conductors are usually dry solids. Typical materials ...
s are a special class of solid electrolytes, where
hydrogen ion A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle ...
s act as charge carriers. One notable example is
superionic water Superionic water, also called superionic ice or ice XVIII is a phase of water that exists at extremely high temperatures and pressures. In superionic water, water molecules break apart and the oxygen ions crystallize into an evenly spaced lat ...
.


Superionic conductors

Superionic conductors where Ωi is more than 0.1 Ohm−1 cm−1 (300 K) and the activation energy for ion transport ''E''i is small (about 0.1 eV), are called advanced superionic conductors. The most famous example of advanced superionic conductor-solid electrolyte is RbAg4I5 where Ωi > 0.25 Ohm−1 cm−1 and Ωe ~10−9 Ohm−1 cm−1 at 300 K. The Hall (drift) ionic mobility in RbAg4I5 is about 2 cm2/(V•s) at room temperatures. The Ωe – Ωi systematic diagram distinguishing the different types of solid-state ionic conductors is given in the figure. No clear examples have been described as yet, of fast ion conductors in the hypothetical advanced superionic conductors class (areas 7 and 8 in the classification plot). However, in crystal structure of several superionic conductors, e.g. in the minerals of the pearceite-polybasite group, the large structural fragments with activation energy of ion transport ''E''i < ''k''BT (300 К) had been discovered in 2006.


Examples


Zirconia-based materials

A common solid electrolyte is
yttria-stabilized zirconia Yttria-stabilized zirconia (YSZ) is a ceramic in which the cubic crystal structure of zirconium dioxide is made stable at room temperature by an addition of yttrium oxide. These oxides are commonly called "zirconia" ( Zr O2) and "yttria" ( Y2 O3 ...
, YSZ. This material is prepared by doping Y2O3 into ZrO2. Oxide ions typically migrate only slowly in solid Y2O3 and in ZrO2, but in YSZ, the conductivity of oxide increases dramatically. These materials are used to allow oxygen to move through the solid in certain kinds of fuel cells. Zirconium dioxide can also be doped with
calcium oxide Calcium oxide (CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term "''lime''" connotes calcium-containing inorganic ...
to give an oxide conductor that is used in oxygen sensors in automobile controls. Upon doping only a few percent, the diffusion constant of oxide increases by a factor of ~1000. Other conductive
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
s function as ion conductors. One example is
NASICON NASICON is an acronym for sodium (Na) Super Ionic CONductor, which usually refers to a family of solids with the chemical formula Na1+xZr2SixP3−xO12, 0 < x < 3. In a broader sense, it is also used for similar compounds where Na, Zr and/or Si ...
, (Na3Zr2Si2PO12), a sodium super-ionic conductor


beta-Alumina

Another example of a popular fast ion conductor is
beta-alumina solid electrolyte Beta-alumina solid electrolyte (BASE) is a fast ion conductor material used as a membrane in several types of molten salt electrochemical cell. Currently there is no known substitute available. β-Alumina exhibits an unusual layered crystal structu ...
. Unlike the usual forms of alumina, this modification has a layered structure with open galleries separated by pillars. Sodium ions (Na+) migrate through this material readily since the oxide framework provides an ionophilic, non-reducible medium. This material is considered as the sodium ion conductor for the
sodium–sulfur battery A sodium–sulfur battery is a type of molten-salt battery constructed from liquid sodium (Na) and sulfur (S). This type of battery has a high energy density (its energy density is 5 times that of a lead-acid battery), high efficiency of charge/ ...
.


Fluoride ion conductors

Lanthanum trifluoride Lanthanum trifluoride is a refractory ionic compound of lanthanum and fluorine. The LaF3 structure Bonding is ionic with lanthanum highly coordinated. The cation sits at the center of a trigonal prism. Nine fluorine atoms are close: three a ...
(LaF3) is conductive for F ions, used in some
ion selective electrode An ion-selective electrode (ISE), also known as a specific ion electrode (SIE), is a transducer (or sensor) that converts the activity of a specific ion dissolved in a solution into an electrical potential. The voltage is theoretically dependent ...
s. Beta-lead fluoride exhibits a continuous growth of conductivity on heating. This property was first discovered by
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
.


Iodides

A textbook example of a fast ion conductor is silver iodide (AgI). Upon heating the solid to 146 °C, this material adopts the alpha-polymorph. In this form, the iodide ions form a rigid cubic framework, and the Ag+ centers are molten. The electrical conductivity of the solid increases by 4000x. Similar behavior is observed for
copper(I) iodide Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding. Copper(I) iodide is white, but samples often appe ...
(CuI),
rubidium silver iodide Rubidium silver iodide is a ternary compound, ternary inorganic compound with the formula RbAg4I5. Its conductivity involves the movement of silver ions within the crystal lattice. It was discovered while searching for chemicals which had the Ionic ...
(RbAg4I5), and Ag2HgI4.


Other Inorganic materials

* Silver sulfide, conductive for Ag+ ions, used in some
ion selective electrode An ion-selective electrode (ISE), also known as a specific ion electrode (SIE), is a transducer (or sensor) that converts the activity of a specific ion dissolved in a solution into an electrical potential. The voltage is theoretically dependent ...
s *
Lead(II) chloride Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mi ...
, conductive at higher temperatures *Some
perovskite Perovskite (pronunciation: ) is a calcium titanium oxide mineral composed of calcium titanate (chemical formula ). Its name is also applied to the class of compounds which have the same type of crystal structure as (XIIA2+VIB4+X2−3), known a ...
ceramics – strontium titanate, strontium stannate – conductive for O2− ions *Zr(HPO4)2.\mathitH2O – conductive for H+ ions *UO2HPO4.4H2O (hydrogen uranyl phosphate tetrahydrate) – conductive for H+ ions *
Cerium(IV) oxide Cerium(IV) oxide, also known as ceric oxide, ceric dioxide, ceria, cerium oxide or cerium dioxide, is an oxide of the rare-earth metal cerium. It is a pale yellow-white powder with the chemical formula CeO2. It is an important commercial produc ...
– conductive for O2− ions


Organic materials

*Many
gel A gel is a semi-solid that can have properties ranging from soft and weak to hard and tough. Gels are defined as a substantially dilute cross-linked system, which exhibits no flow when in the steady-state, although the liquid phase may still dif ...
s, such
polyacrylamide Polyacrylamide (abbreviated as PAM) is a polymer with the formula (-CH2CHCONH2-). It has a linear-chain structure. PAM is highly water-absorbent, forming a soft gel when hydrated. In 2008, an estimated 750,000,000 kg were produced, mainly f ...
s, agar, etc. are fast ion conductors *A salt dissolved in a polymer – e.g.
lithium perchlorate Lithium perchlorate is the inorganic compound with the formula LiClO4. This white or colourless crystalline salt is noteworthy for its high solubility in many solvents. It exists both in anhydrous form and as a trihydrate. Applications Inorga ...
in
polyethylene oxide Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular we ...
*
Polyelectrolyte Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are ...
s and
Ionomer An ionomer () ('' iono-'' + ''-mer'') is a polymer composed of repeat units of both electrically neutral repeating units and ionized units covalently bonded to the polymer backbone as pendant group moieties. Usually no more than 15 mole percent ...
s – e.g.
Nafion Nafion is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer-copolymer discovered in the late 1960s by Dr. Walther Grot of DuPont. Nafion is a brand of the Chemours company. It is the first of a class of synthetic polymers with ...
, a H+ conductor


History

The important case of fast ionic conduction is one in a surface space-charge layer of ionic crystals. Such conduction was first predicted by
Kurt Lehovec Kurt Lehovec (June 12, 1918 – February 17, 2012) was one of the pioneers of the integrated circuit. While also pioneering the photo-voltaic effect, light-emitting diodes and lithium batteries, he innovated the concept of p-n junction isol ...
. As a space-charge layer has nanometer thickness, the effect is directly related to
nanoionics Nanoionics is the study and application of phenomena, properties, effects, methods and mechanisms of processes connected with fast ion transport (FIT) in all-solid-state nanoscale systems. The topics of interest include fundamental properties of ...
(nanoionics-I). Lehovec's effect is used as a basis for developing
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to na ...
for portable lithium batteries and fuel cells.


See also

* Mixed conductor


References

{{Authority control Electric and magnetic fields in matter Electrochemical concepts