Superfluid film
   HOME

TheInfoList



OR:

Superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
is a phenomenon where a
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
, or a fraction of a fluid, loses all its
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
and can flow without resistance. A superfluid film is the thin film it may then form as a result. Superfluid helium, for example, forms a 30-nanometre film on the surface of any container. The film's properties cause the helium to climb the walls of the container and, if this is not closed, flow out. Superfluidity, like
superconductivity Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ord ...
, is a macroscopic manifestation of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. There is considerable interest, both theoretical and practical, in these quantum
phase transition In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
s. There has been a tremendous amount of work done in the field of phase transitions and critical phenomena in two dimensions.David Thouless: Condensed Matter Physics in Less Than Three dimensions. Ch. 7. The New Physics, Paul Davies, ed. Cambridge. Much of the interest in this field is because as the number of dimensions increases, the number of exactly solvable models diminishes drastically. In three or more dimensions one must resort to a mean field theory approach. The theory of superfluid transitions in two dimensions is known as the Kosterlitz-Thouless (KT) theory. The 2D XY model - where the order parameter is characterized by an amplitude and a phase - is the universality class for this transition.


Experimental techniques


Maximising the film's area

In looking at
phase transition In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
s in thin films, specifically
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, the two main experimental signatures are the
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortex, vortices that continue to rotate indefinitely. Superfluidity occurs ...
fraction and
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is a ...
. If either of these measurements were to be done on a superfluid film in a typical open container, the film signal would be overwhelmed by the background signal from the container. Therefore, when studying superfluid films, it is of paramount importance to study a system of large surface area as to enhance the film signal. There are several ways of doing this. In the first, a long thin strip of material such as PET film is rolled up into a "jelly roll" configuration. The result is a film that is a long continuous plane, referred to as a planar film. A second way is to have a highly porous material such as porous gold, Vycor, or
Aerogel Aerogels are a class of manufacturing, synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid wit ...
. This results in a multiply connected film where the substrate is much like Swiss cheese with the holes interconnected. These porous materials all have an extremely high surface area to volume ratio. A third method is to separate two extremely flat plates by a thin spacer, again resulting in a large surface area to volume ratio. Image:Porous_Gold_10micron.jpg,
Scanning electron microscope A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that ...
image of porous gold, 10 micrometres square


Measuring the superfluid fraction

Torsional oscillator using a single fin. The film's superfluid response can be measured by using a ''torsional oscillator'' to measure the
moment of inertia The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relatively to a rotational axis. It is the ratio between ...
of a cell containing it. The oscillator comprises a torsion rod to which the cell is attached, together with an arrangement for oscillating the cell at its
resonant frequency Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
around the rod's axis. A higher resonant frequency corresponds to a lower moment of inertia. Any superfluid fraction of the film loses its viscosity, and therefore doesn't participate in the oscillations. This means it no longer contributes to the cell's moment of inertia, and the resonant frequency increases. The oscillation is achieved via capacitive coupling with a fin or pair of fins, depending on the configuration. (The arrangement in the diagram uses one fin, shown in grey.) An early design of torsional oscillator was first used by Andronikashvili to detect superfluid in bulk fluid 4He, and later modified by John Reppy and co-workers at Cornell in the 1970s. Recall that the resonant period of a torsional oscillator is 2\pi\sqrt. Therefore, lowering the moment of inertia reduces the resonant period of the oscillator. By measuring the period drop as a function of temperature, and total loading of the film from the empty cell value, one can deduce the fraction of the film that has entered the superfluid state. A typical set of data clearly showing the superfluid decoupling in helium films is shown in ref. 2.


Measurements at higher velocities

A typical torsional oscillator has a resonant frequency on the order of 1000 Hz. This corresponds to a maximum velocity of the substrate of micrometres per second. The critical velocity of helium films is reported to be on the order of 0.1 m/s . Therefore, in comparison to the critical velocity, the oscillator is almost at rest. To probe theories of dynamical aspects of thin film phase transitions one must use an oscillator with a much higher frequency. The quartz crystal microbalance provides just such a tool having a resonant frequency of about 10  kHz. The operating principles are much the same as for a torsional oscillator. When the thin film is adsorbed onto the surface of the crystal, the resonant frequency of the quartz crystal drops. As the crystal is cooled through the superfluid transition, the superfluid decouples and the frequency increases.


Some results

The KT theory has been confirmed in a set of experiments by Bishop and Reppy in planar films, i.e. Helium films on mylar . Specifically, they found that the transition temperature scaled with film thickness and the superfluid transition is found in films as thin as 5% of a monolayer. More recently, it has been found that near the transition temperature when the correlation lengths exceed any relevant length scale in the system, a multiply connected film will behave as a 3D system near its critical point.


See also

*
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low Density, densities is cooled to temperatures very close to absolute zero#Relation with Bose–Einste ...
* Quantum vortex * Supersolid


Notes


References

* {{cite journal , last1=Chan , first1=M. H. W. , last2=Yanof , first2=A. W. , last3=Reppy , first3=J. D. , title=Superfluidity of ThinHe4Films , journal=Physical Review Letters , publisher=American Physical Society (APS) , volume=32 , issue=24 , date=17 June 1974 , issn=0031-9007 , doi=10.1103/physrevlett.32.1347 , pages=1347–1350, bibcode=1974PhRvL..32.1347C Superfluidity