HOME

TheInfoList



OR:

The Sunyaev–Zeldovich effect (named after
Rashid Sunyaev Rashid Alievich Sunyaev ( tt-Cyrl, Рәшит Гали улы Сөнәев, russian: Раши́д Али́евич Сюня́ев; born 1 March 1943 in Tashkent, USSR) is a German, Soviet, and Russian astrophysicist of Tatar descent. He got his ...
and Yakov B. Zeldovich and often abbreviated as the SZ effect) is the spectral distortion of the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space ...
(CMB) through
inverse Compton scattering Compton scattering, discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. If it results in a decrease in energy (increase in wavelength) of the photon ...
by high-energy
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kno ...
in galaxy clusters, in which the low-energy CMB
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space ...
spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.


Overview

The Sunyaev–Zeldovich effect was predicted by
Rashid Sunyaev Rashid Alievich Sunyaev ( tt-Cyrl, Рәшит Гали улы Сөнәев, russian: Раши́д Али́евич Сюня́ев; born 1 March 1943 in Tashkent, USSR) is a German, Soviet, and Russian astrophysicist of Tatar descent. He got his ...
and
Yakov Zeldovich Yakov Borisovich Zeldovich ( be, Я́каў Бары́савіч Зяльдо́віч, russian: Я́ков Бори́сович Зельдо́вич; 8 March 1914 – 2 December 1987), also known as YaB, was a leading Soviet physicist of Bel ...
to describe anisotropies in the CMB. The effect is caused by the CMB interacting with high energy electrons. These high energy electrons cause inverse Compton scattering of CMB photons which causes a distortion in the radiation spectrum of the CMB. The Sunyaev–Zeldovich effect is most apparent when observing galactic clusters. Analysis of CMB data at higher angular resolution (high \ell-values) requires taking into account the Sunyaev–Zeldovich effect. The Sunyaev–Zeldovich effect can be divided into different types: *
Thermal A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
effects, where the CMB photons interact with electrons that have high energies due to their temperature *
Kinematic Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a fi ...
effects, a second-order effect where the CMB photons interact with electrons that have high energies due to their bulk motion (also called the Ostriker–Vishniac effect, after
Jeremiah P. Ostriker Jeremiah Paul "Jerry" Ostriker (born April 13, 1937) is an American astrophysicist and a professor of astronomy at Columbia University and is the Charles A. Young Professor ''Emeritus'' at Princeton where he also continues as a senior research s ...
and Ethan Vishniac.) *
Polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
The Sunyaev–Zeldovich effect is of major
astrophysical Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the hea ...
and
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
interest. It can help determine the value of the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
, determine the location of new galaxy clusters, and in the study of cluster structure and mass. Since the Sunyaev–Zeldovich effect is a scattering effect, its magnitude is independent of redshift, which means that clusters at high redshift can be detected just as easily as those at low redshift.


Thermal effects

The distortion of the CMB resulting from a large number of high energy electrons is known as the thermal Sunyaev–Zeldovich effect. The thermal Sunyaev–Zeldovich effect is most commonly studied in
galaxy cluster A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-lar ...
s. By comparing the Sunyaev–Zeldovich effect and X-ray emission data, the thermal structure of the cluster can be studied, and if the temperature profile is known, Sunyaev–Zeldovich data can be used to determine the baryonic mass of the cluster along the line of sight. Comparing Sunyaev–Zeldovich and X-ray data can also be used to determine the Hubble constant using the angular diameter distance of the cluster. These thermal distortions can also be measured in
supercluster A supercluster is a large group of smaller galaxy clusters or galaxy groups; they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group (which contains more than 54 galaxies), which in turn ...
s and in gases in the local group, although they are less significant and more difficult to detect. In superclusters, the effect is not strong (< 8 μK), but with precise enough equipment, measuring this distortion can give a glimpse into large-scale structure formation. Gases in the local group may also cause anisotropies in the CMB due to the thermal Sunyaev–Zeldovich effect which must be taken into account when measuring the CMB for certain angular scales.


Kinematic effects

The kinematic Sunyaev–Zeldovich effect is caused when a galaxy cluster is moving relative to the
Hubble flow Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
. The kinematic Sunyaev–Zeldovich effect gives a method for calculating the peculiar velocity: \Delta T_\text = - T_\text\frac \tau where V_p is the peculiar velocity, and \tau is the optical depth. In order to use this equation, the thermal and kinematic effects need to be separated. The effect is relatively weak for most galaxy clusters. Using
gravitational lens A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This effect is known ...
ing, the peculiar velocity can be used to determine other velocity components for a specific galaxy cluster. These kinematic effects can be used to determine the Hubble constant and the behavior of clusters.


Research

Current research is focused on modelling how the effect is generated by the intracluster plasma in
galaxy cluster A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-lar ...
s, and on using the effect to estimate the
Hubble constant Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
and to separate different components in the angular average statistics of fluctuations in the background. Hydrodynamic structure formation simulations are being studied to gain data on thermal and kinetic effects in the theory. Observations are difficult due to the small amplitude of the effect and to confusion with experimental error and other sources of CMB temperature fluctuations. To distinguish the SZ effect due to galaxy clusters from ordinary density perturbations, both the
spectral ''Spectral'' is a 2016 3D military science fiction, supernatural horror fantasy and action-adventure thriller war film directed by Nic Mathieu. Written by himself, Ian Fried, and George Nolfi from a story by Fried and Mathieu. The film stars J ...
dependence and the spatial dependence of fluctuations in the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all space ...
are used. A factor which facilitates high redshift cluster detection is the angular scale versus redshift relation: it changes little between redshifts of 0.3 and 2, meaning that clusters between these redshifts have similar sizes on the sky. The use of surveys of clusters detected by their Sunyaev–Zeldovich effect for the determination of cosmological parameters has been demonstrated by Barbosa et al. (1996). This might help in understanding the dynamics of dark energy in surveys (
South Pole Telescope The South Pole Telescope (SPT) is a diameter telescope located at the Amundsen–Scott South Pole Station, Antarctica. The telescope is designed for observations in the microwave, millimeter-wave, and submillimeter-wave regions of the electroma ...
, Atacama Cosmology Telescope, ''
Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical ...
'').


Observations

In 1984, researchers from the Cambridge Radio Astronomy Group and the
Owens Valley Radio Observatory Owens Valley Radio Observatory (OVRO) is a radio astronomy observatory located near Big Pine, California (US) in Owens Valley. It lies east of the Sierra Nevada, approximately north of Los Angeles and southeast of Bishop. It was established in 19 ...
first detected the Sunyaev–Zeldovich effect from clusters of galaxies. Ten years later, the Ryle Telescope was used to image a
cluster of galaxies A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. They are the second-lar ...
in the Sunyaev–Zeldovich effect for the first time. In 1987 the Cosmic Background Explorer (COBE) satellite observed the CMB and gave more accurate data for anisotropies in the CMB, allowing for more accurate analysis of the Sunyaev–Zeldovich effect. Instruments built specifically to study the effect include the Sunyaev–Zeldovich camera on the
Atacama Pathfinder Experiment The Atacama Pathfinder Experiment (APEX) is a radio telescope 5,064 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert in northern Chile, 50 km east of San Pedro de Atacama built and operated by 3 European r ...
, and the Sunyaev–Zeldovich Array, which both saw first light in 2005. In 2012, the Atacama Cosmology Telescope (ACT) performed the first statistical detection of the kinematic SZ effect. In 2012 the kinematic SZ effect was detected in an individual object for the first time in MACS J0717.5+3745. As of 2015, the South Pole Telescope (SPT) had used the Sunyaev–Zeldovich effect to discover 415 galaxy clusters. The Sunyaev–Zeldovich effect has been and will continue to be an important tool in discovering hundreds of galaxy clusters. Recent experiments such as the OLIMPO balloon-borne telescope try to collect data in specific frequency bands and specific regions of the sky in order to pinpoint the Sunyaev–Zeldovich effect and give a more accurate map of certain regions of the sky.


See also

*
Sachs–Wolfe effect The Sachs–Wolfe effect, named after Rainer K. Sachs and Arthur M. Wolfe, is a property of the cosmic microwave background radiation (CMB), in which photons from the CMB are gravitationally redshifted, causing the CMB spectrum to appear uneven. ...
*
Cosmic microwave background spectral distortions CMB spectral distortions are tiny departures of the average cosmic microwave background (CMB) frequency spectrum from the predictions given by a perfect black body. They can be produced by a number of standard and non-standard processes occurring ...


References


Further reading

* * * * * * * * * * * * * Royal Astronomical Society, ''Corrupted echoes from the Big Bang?'' RAS Press Notice PN 04/01


External links


Corrupted echoes from the Big Bang?
innovations-report.com.
Sunyaev–Zel'dovich effect on arxiv.org
{{DEFAULTSORT:Sunyaev-Zeldovich Effect Radio astronomy Physical cosmology