HOME

TheInfoList



OR:

The strong interaction or strong force is a
fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electro ...
that confines
quarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly ...
into proton,
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
, and other
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
. Most of the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
of a common proton or
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10−15 m (slightly more than the radius of a
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
), the strong force is approximately 100 times as strong as
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
, 106 times as strong as the
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
, and 1038 times as strong as gravitation. The strong interaction is observable at two ranges and mediated by two force carriers. On a larger scale (of about 1 to 3 fm), it is the force (carried by
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s) that binds protons and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s (nucleons) together to form the nucleus of an
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
. On the smaller scale (less than about 0.8 fm, the radius of a nucleon), it is the force (carried by gluons) that holds quarks together to form protons, neutrons, and other
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
particles. In the latter context, it is often known as the color force. The strong force inherently has such a high strength that hadrons bound by the strong force can produce new massive particles. Thus, if hadrons are struck by high-energy particles, they give rise to new hadrons instead of emitting freely moving radiation ( gluons). This property of the strong force is called
color confinement In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions b ...
, and it prevents the free "emission" of the strong force: instead, in practice, jets of massive particles are produced. In the context of atomic nuclei, the same strong interaction force (that binds quarks within a
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
) also binds protons and neutrons together to form a nucleus. In this capacity it is called the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
(or ''residual strong force''). So the residuum from the strong interaction within protons and neutrons also binds nuclei together. As such, the residual strong interaction obeys a distance-dependent behavior between nucleons that is quite different from that when it is acting to bind quarks within nucleons. Additionally, distinctions exist in the
binding energies In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
of the nuclear force of
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
vs nuclear fission. Nuclear fusion accounts for most energy production in the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
and other stars. Nuclear fission allows for decay of radioactive elements and
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s, although it is often mediated by the
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
. Artificially, the energy associated with the nuclear force is partially released in
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced ...
and nuclear weapons, both in
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
or
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
-based fission weapons and in fusion weapons like the hydrogen bomb. The strong interaction is mediated by the exchange of massless particles called gluons that act between quarks,
antiquarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
, and other gluons. Gluons are thought to interact with quarks and other gluons by way of a type of charge called
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of colo ...
. Color charge is analogous to electromagnetic charge, but it comes in three types (±red, ±green, and ±blue) rather than one, which results in a different type of force, with different rules of behavior. These rules are detailed in the theory of quantum chromodynamics (QCD), which is the theory of quark–gluon interactions.


History

Before 1971, physicists were uncertain as to how the atomic nucleus was bound together. It was known that the nucleus was composed of protons and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s and that protons possessed positive
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
, while neutrons were electrically neutral. By the understanding of physics at that time, positive charges would repel one another and the positively charged protons should cause the nucleus to fly apart. However, this was never observed. New physics was needed to explain this phenomenon. A stronger attractive force was postulated to explain how the atomic nucleus was bound despite the protons' mutual electromagnetic repulsion. This hypothesized force was called the ''strong force'', which was believed to be a fundamental force that acted on the protons and neutrons that make up the nucleus. In 1964,
Murray Gell-Mann Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American physicist who received the 1969 Nobel Prize in Physics for his work on the theory of elementary particles. He was the Robert Andrews Millikan Professor of Theoretical ...
and
George Zweig George Zweig (; born May 30, 1937) is a Russian-American physicist. He was trained as a particle physicist under Richard Feynman. He introduced, independently of Murray Gell-Mann, the quark model (although he named it "aces"). He later turned his ...
proposed the
quark model In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
, which holds that protons and neutrons (along with other subatomic particles called
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s and
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s) are actually made up of smaller particles called quarks. The strong attraction between nucleons was the side-effect of a more fundamental force that bound the quarks together into protons and neutrons. The theory of quantum chromodynamics explains that quarks carry what is called a
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of colo ...
, although it has no relation to visible color. Quarks with unlike color charge attract one another as a result of the strong interaction, and the particle that mediates this was called the gluon.


Behavior of the strong force

The word ''strong'' is used since the strong interaction is the "strongest" of the four fundamental forces. At a distance of 10−15 m, its strength is around 100 times that of the
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
, some 106 times as great as that of the
weak force Weak may refer to: Songs * Weak (AJR song), "Weak" (AJR song), 2016 * Weak (Melanie C song), "Weak" (Melanie C song), 2011 * Weak (SWV song), "Weak" (SWV song), 1993 * Weak (Skunk Anansie song), "Weak" (Skunk Anansie song), 1995 * "Weak", a song ...
, and about 1038 times that of gravitation. The strong force is described by quantum chromodynamics (QCD), a part of the Standard Model of particle physics. Mathematically, QCD is a
non-Abelian gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie group ...
based on a local (gauge) symmetry group called
SU(3) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the specia ...
. The force carrier particle of the strong interaction is the gluon, a massless gauge boson. Unlike the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
in electromagnetism, which is neutral, the gluon carries a color charge. Quarks and gluons are the only fundamental particles that carry non-vanishing color charge, and hence they participate in strong interactions only with each other. The strong force is the expression of the gluon interaction with other quark and gluon particles. All quarks and gluons in QCD interact with each other through the strong force. The strength of interaction is parameterized by the strong coupling constant. This strength is modified by the gauge color charge of the particle, a group-theoretical property. The strong force acts between quarks. Unlike all other forces (electromagnetic, weak, and gravitational), the strong force does not diminish in strength with increasing distance between pairs of quarks. After a limiting distance (about the size of a
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
) has been reached, it remains at a strength of about 10,000  newtons (N), no matter how much farther the distance between the quarks. As the separation between the quarks grows, the energy added to the pair creates new pairs of matching quarks between the original two; hence it is impossible to isolate quarks. The explanation is that the amount of work done against a force of 10,000 newtons is enough to create particle–antiparticle pairs within a very short distance of that interaction. The very energy added to the system required to pull two quarks apart would create a pair of new quarks that will pair up with the original ones. In QCD, this phenomenon is called
color confinement In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions b ...
; as a result only hadrons, not individual free quarks, can be observed. The failure of all experiments that have searched for
free quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s is considered to be evidence of this phenomenon. The elementary quark and gluon particles involved in a high energy collision are not directly observable. The interaction produces jets of newly created hadrons that are observable. Those hadrons are created, as a manifestation of mass–energy equivalence, when sufficient energy is deposited into a quark–quark bond, as when a quark in one proton is struck by a very fast quark of another impacting proton during a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
experiment. However,
quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a ...
s have been observed.


Residual strong force

Contrary to the description above of distance independence, in the post- Big Bang universe it is ''not'' the case that every quark in the universe attracts every other quark. Color confinement implies that the strong force acts without distance-diminishment only between pairs of quarks, and that in compact collections of bound quarks (
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s), the net color-charge of the quarks essentially cancels out, resulting in a limit of the action of the color-forces: From distances approaching or greater than the radius of a proton, compact collections of color-interacting quarks (hadrons) collectively appear to have effectively no color-charge, or "colorless", and the strong force is therefore nearly absent between those hadrons. However, the cancellation is not quite perfect, and a residual force (described below) remains. This residual force ''does'' diminish rapidly with distance, and is thus very short-range (effectively a few femtometres). It manifests as a force between the "colorless" hadrons, and is known as the ''
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
'' or ''residual strong force'' (and historically as the ''strong nuclear force''). The nuclear force acts between
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s, known as
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s and
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classif ...
s. This "residual strong force", acting indirectly, transmits gluons that form part of the virtual π and ρ 
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s, which, in turn, transmit the force between nucleons that holds the nucleus (beyond protium) together. The residual strong force is thus a minor residuum of the strong force that binds quarks together into protons and neutrons. This same force is much weaker ''between'' neutrons and protons, because it is mostly neutralized ''within'' them, in the same way that electromagnetic forces between neutral atoms (
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
s) are much weaker than the electromagnetic forces that hold electrons in association with the nucleus, forming the atoms. Unlike the strong force, the residual strong force diminishes with distance, and does so rapidly. The decrease is approximately as a negative exponential power of distance, though there is no simple expression known for this; see ''
Yukawa potential In particle, atomic and condensed matter physics, a Yukawa potential (also called a screened Coulomb potential) is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form: :V_\text(r)= -g^2\frac, where is a ...
''. The rapid decrease with distance of the attractive residual force and the less-rapid decrease of the repulsive electromagnetic force acting between protons within a nucleus, causes the instability of larger atomic nuclei, such as all those with
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
s larger than 82 (the element
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
). Although the nuclear force is weaker than the strong interaction itself, it is still highly energetic: transitions produce
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s. The mass of a nucleus is significantly different from the summed masses of the individual nucleons. This mass defect is due to the potential energy associated with the nuclear force. Differences between mass defects power
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
and nuclear fission.


Unification

The so-called
Grand Unified Theories A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this u ...
(GUT) aim to describe the strong interaction and the electroweak interaction as aspects of a single force, similarly to how the electromagnetic and
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
s were unified by the Glashow–Weinberg–Salam model into
electroweak interaction In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
. The strong interaction has a property called
asymptotic freedom In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. Asymptotic fre ...
, wherein the strength of the strong force diminishes at higher energies (or temperatures). The theorized energy where its strength becomes equal to the electroweak interaction is the
grand unification energy The grand unification energy \Lambda_, or the GUT scale, is the energy level above which, it is believed, the electromagnetic force, weak force, and strong force become equal in strength and unify to one force governed by a simple Lie group. The e ...
. However, no Grand Unified Theory has yet been successfully formulated to describe this process, and Grand Unification remains an unsolved problem in physics. If GUT is correct, after the Big Bang and during the
electroweak epoch In physical cosmology, the electroweak epoch was the period in the evolution of the early universe when the temperature of the universe had fallen enough that the strong force separated from the electroweak interaction, but was high enough for ele ...
of the universe, the electroweak force separated from the strong force. Accordingly, a
grand unification epoch In physical cosmology, assuming that nature is described by a Grand Unified Theory, the grand unification epoch was the period in the evolution of the early universe following the Planck epoch, starting at about 10−43 seconds after the Big Bang, ...
is hypothesized to have existed prior to this.


See also

*
Color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of colo ...
* Coupling constant * Nuclear binding energy *
Nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
* QCD matter and Quark gluon plasma * Quantum field theory and Gauge theory * Standard Model of particle physics **
Mathematical formulation of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
**
Mathematical formulation of the Standard Model This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group . The theory is commonly viewed as describing the fundamental set o ...
*
Weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
,
Electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
and
Gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
*
Yukawa interaction In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is a scalar field (or pseudoscalar field) and a Dirac field of the ...


References


Further reading

* * * * *


External links

{{Authority control Quantum chromodynamics Nuclear physics Fundamental interactions