HOME

TheInfoList



OR:

Star formation is the process by which dense regions within molecular clouds in The "medium" is present further soon.-->interstellar space, sometimes referred to as "stellar nurseries" or "
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
-forming regions",
collapse Collapse or its variants may refer to: Concepts * Collapse (structural) * Collapse (topology), a mathematical concept * Collapsing manifold * Collapse, the action of collapsing or telescoping objects * Collapsing user interface elements ** ...
and form
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s. As a branch of
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and
young stellar object Young stellar object (YSO) denotes a star in its early stage of evolution. This class consists of two groups of objects: protostars and pre-main-sequence stars. Classification by spectral energy distribution A star forms by accumulation of mat ...
s as its immediate products. It is closely related to
planet formation The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting t ...
, another branch of
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as
star cluster Star clusters are large groups of stars. Two main types of star clusters can be distinguished: globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound, while open clusters are more loosely cl ...
s or
stellar association A stellar association is a very loose star cluster, looser than both open clusters and globular clusters. Stellar associations will normally contain from 10 to 100 or more stars. The stars share a common origin, but have become gravitationally ...
s.


Stellar nurseries


Interstellar clouds

A spiral galaxy like the Milky Way contains
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s,
stellar remnant In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects ...
s, and a diffuse interstellar medium (ISM) of gas and dust. The interstellar medium consists of 104 to 106 particles per cm3 and is typically composed of roughly 70%
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
by mass, with most of the remaining gas consisting of
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
. This medium has been chemically enriched by trace amounts of heavier elements that were produced and ejected from stars via the fusion of helium as they passed beyond the end of their main sequence lifetime. Higher density regions of the interstellar medium form clouds, or '' diffuse nebulae'', where star formation takes place. In contrast to spirals, an elliptical galaxy loses the cold component of its interstellar medium within roughly a billion years, which hinders the galaxy from forming diffuse nebulae except through mergers with other galaxies. In the dense nebulae where stars are produced, much of the hydrogen is in the molecular (H2) form, so these nebulae are called molecular clouds. The Herschel Space Observatory has revealed that filaments are truly ubiquitous in molecular clouds. Dense molecular filaments, which are central to the star formation process, will fragment into gravitationally bound cores, most of which will evolve into stars. Continuous accretion of gas, geometrical bending, and magnetic fields may control the detailed fragmentation manner of the filaments. In supercritical filaments observations have revealed quasi-periodic chains of dense cores with spacing comparable to the filament inner width, and includes embedded protostars with outflows. Observations indicate that the coldest clouds tend to form low-mass stars, observed first in the infrared inside the clouds, then in visible light at their surface when the clouds dissipate, while giant molecular clouds, which are generally warmer, produce stars of all masses. These giant molecular clouds have typical densities of 100 particles per cm3, diameters of , masses of up to 6 million solar masses (), and an average interior temperature of 10  K. About half the total mass of the galactic ISM is found in molecular clouds and in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
there are an estimated 6,000 molecular clouds, each with more than . The nearest nebula to the Sun where massive stars are being formed is the Orion Nebula, away. However, lower mass star formation is occurring about 400–450 light years distant in the ρ Ophiuchi cloud complex. A more compact site of star formation is the opaque clouds of dense gas and dust known as Bok globules, so named after the astronomer Bart Bok. These can form in association with collapsing molecular clouds or possibly independently. The Bok globules are typically up to a light year across and contain a few solar masses. They can be observed as dark clouds silhouetted against bright emission nebulae or background stars. Over half the known Bok globules have been found to contain newly forming stars.


Cloud collapse

An interstellar cloud of gas will remain in
hydrostatic equilibrium In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planeta ...
as long as the
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
of the gas
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
is in balance with the
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potenti ...
of the internal gravitational force. Mathematically this is expressed using the
virial theorem In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. ...
, which states that, to maintain equilibrium, the gravitational potential energy must equal twice the internal thermal energy. If a cloud is massive enough that the gas pressure is insufficient to support it, the cloud will undergo gravitational collapse. The mass above which a cloud will undergo such collapse is called the
Jeans mass In stellar physics, the Jeans instability causes the collapse of interstellar gas clouds and subsequent star formation, named after James Jeans. It occurs when the internal gas pressure is not strong enough to prevent gravitational collapse of a ...
. The Jeans mass depends on the temperature and density of the cloud, but is typically thousands to tens of thousands of solar masses. During cloud collapse dozens to tens of thousands of stars form more or less simultaneously which is observable in so-called embedded clusters. The end product of a core collapse is an
open cluster An open cluster is a type of star cluster made of up to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, an ...
of stars. In ''triggered star formation'', one of several events might occur to compress a molecular cloud and initiate its gravitational collapse. Molecular clouds may collide with each other, or a nearby
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
explosion can be a trigger, sending shocked matter into the cloud at very high speeds. (The resulting new stars may themselves soon produce supernovae, producing self-propagating star formation.) Alternatively, galactic collisions can trigger massive
starburst MicroPro International Corporation was an American software company founded in 1978 in San Rafael, California. They are best known as the publisher of WordStar, a popular early word processor for personal computers. History Founding and early su ...
s of star formation as the gas clouds in each galaxy are compressed and agitated by tidal forces. The latter mechanism may be responsible for the formation of globular clusters. A supermassive black hole at the core of a galaxy may serve to regulate the rate of star formation in a galactic nucleus. A black hole that is accreting infalling matter can become active, emitting a strong wind through a collimated relativistic jet. This can limit further star formation. Massive black holes ejecting radio-frequency-emitting particles at near-light speed can also block the formation of new stars in aging galaxies. However, the radio emissions around the jets may also trigger star formation. Likewise, a weaker jet may trigger star formation when it collides with a cloud. As it collapses, a molecular cloud breaks into smaller and smaller pieces in a hierarchical manner, until the fragments reach stellar mass. In each of these fragments, the collapsing gas radiates away the energy gained by the release of
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potenti ...
. As the density increases, the fragments become opaque and are thus less efficient at radiating away their energy. This raises the temperature of the cloud and inhibits further fragmentation. The fragments now condense into rotating spheres of gas that serve as stellar embryos. Complicating this picture of a collapsing cloud are the effects of turbulence, macroscopic flows, rotation, magnetic fields and the cloud geometry. Both rotation and magnetic fields can hinder the collapse of a cloud. Turbulence is instrumental in causing fragmentation of the cloud, and on the smallest scales it promotes collapse.


Protostar

A protostellar cloud will continue to collapse as long as the gravitational binding energy can be eliminated. This excess energy is primarily lost through radiation. However, the collapsing cloud will eventually become opaque to its own radiation, and the energy must be removed through some other means. The dust within the cloud becomes heated to temperatures of , and these particles radiate at wavelengths in the far infrared where the cloud is transparent. Thus the dust mediates the further collapse of the cloud. During the collapse, the density of the cloud increases towards the center and thus the middle region becomes optically opaque first. This occurs when the density is about . A core region, called the first hydrostatic core, forms where the collapse is essentially halted. It continues to increase in temperature as determined by the virial theorem. The gas falling toward this opaque region collides with it and creates shock waves that further heat the core. When the core temperature reaches about , the thermal energy dissociates the H2 molecules. This is followed by the ionization of the hydrogen and helium atoms. These processes absorb the energy of the contraction, allowing it to continue on timescales comparable to the period of collapse at free fall velocities. After the density of infalling material has reached about 10−8 g / cm3, that material is sufficiently transparent to allow energy radiated by the protostar to escape. The combination of convection within the protostar and radiation from its exterior allow the star to contract further. This continues until the gas is hot enough for the internal
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
to support the protostar against further gravitational collapse—a state called
hydrostatic equilibrium In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planeta ...
. When this accretion phase is nearly complete, the resulting object is known as a protostar. Accretion of material onto the protostar continues partially from the newly formed
circumstellar disc A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reser ...
. When the density and temperature are high enough, deuterium fusion begins, and the outward
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country a ...
of the resultant radiation slows (but does not stop) the collapse. Material comprising the cloud continues to "rain" onto the protostar. In this stage bipolar jets are produced called Herbig–Haro objects. This is probably the means by which excess
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
of the infalling material is expelled, allowing the star to continue to form. When the surrounding gas and dust envelope disperses and accretion process stops, the star is considered a pre-main-sequence star (PMS star). The energy source of these objects is gravitational contraction, as opposed to hydrogen burning in main sequence stars. The PMS star follows a Hayashi track on the Hertzsprung–Russell (H–R) diagram. The contraction will proceed until the Hayashi limit is reached, and thereafter contraction will continue on a Kelvin–Helmholtz timescale with the temperature remaining stable. Stars with less than thereafter join the main sequence. For more massive PMS stars, at the end of the Hayashi track they will slowly collapse in near hydrostatic equilibrium, following the
Henyey track The Henyey track is a path taken by pre-main-sequence stars with masses greater than 0.5 solar masses in the Hertzsprung–Russell diagram after the end of the Hayashi track. The astronomer Louis G. Henyey and his colleagues in the 1950s showe ...
. Finally,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
begins to fuse in the core of the star, and the rest of the enveloping material is cleared away. This ends the protostellar phase and begins the star's main sequence phase on the H–R diagram. The stages of the process are well defined in stars with masses around or less. In high mass stars, the length of the star formation process is comparable to the other timescales of their evolution, much shorter, and the process is not so well defined. The later evolution of stars is studied in stellar evolution.


Observations

Key elements of star formation are only available by observing in
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s other than the optical. The protostellar stage of stellar existence is almost invariably hidden away deep inside dense clouds of gas and dust left over from the GMC. Often, these star-forming cocoons known as Bok globules, can be seen in silhouette against bright emission from surrounding gas. Early stages of a star's life can be seen in
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
light, which penetrates the dust more easily than visible light. Observations from the
Wide-field Infrared Survey Explorer Wide-field Infrared Survey Explorer (WISE, observatory code C51, Explorer 92 and SMEX-6) is a NASA infrared astronomy space telescope in the Explorers Program. It was launched in December 2009, and placed in hibernation mode in February 2 ...
(WISE) have thus been especially important for unveiling numerous galactic protostars and their parent
star cluster Star clusters are large groups of stars. Two main types of star clusters can be distinguished: globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound, while open clusters are more loosely cl ...
s.Majaess, D. (2013)
''Discovering protostars and their host clusters via WISE''
ApSS, 344, 1
''VizieR catalog''
Examples of such embedded star clusters are FSR 1184, FSR 1190, Camargo 14, Camargo 74, Majaess 64, and Majaess 98.Camargo et al. (2015)
''New Galactic embedded clusters and candidates from a WISE Survey''
New Astronomy, 34
The structure of the molecular cloud and the effects of the protostar can be observed in near-IR
extinction Extinction is the termination of a kind of organism or of a group of kinds (taxon), usually a species. The moment of extinction is generally considered to be the death of the Endling, last individual of the species, although the Functional ext ...
maps (where the number of stars are counted per unit area and compared to a nearby zero extinction area of sky), continuum dust emission and rotational transitions of CO and other molecules; these last two are observed in the millimeter and submillimeter range. The radiation from the protostar and early star has to be observed in
infrared astronomy Infrared astronomy is a sub-discipline of astronomy which specializes in the observation and analysis of astronomical objects using infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 micrometers, and falls in be ...
wavelengths, as the
extinction Extinction is the termination of a kind of organism or of a group of kinds (taxon), usually a species. The moment of extinction is generally considered to be the death of the Endling, last individual of the species, although the Functional ext ...
caused by the rest of the cloud in which the star is forming is usually too big to allow us to observe it in the visual part of the spectrum. This presents considerable difficulties as the Earth's atmosphere is almost entirely opaque from 20μm to 850μm, with narrow windows at 200μm and 450μm. Even outside this range, atmospheric subtraction techniques must be used.
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
observations have proven useful for studying young stars, since X-ray emission from these objects is about 100–100,000 times stronger than X-ray emission from main-sequence stars. The earliest detections of X-rays from T Tauri stars were made by the Einstein X-ray Observatory. For low-mass stars X-rays are generated by the heating of the stellar corona through magnetic reconnection, while for high-mass O and early B-type stars X-rays are generated through supersonic shocks in the stellar winds. Photons in the soft X-ray energy range covered by the
Chandra X-ray Observatory The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources ...
and XMM-Newton may penetrate the interstellar medium with only moderate absorption due to gas, making the X-ray a useful wavelength for seeing the stellar populations within molecular clouds. X-ray emission as evidence of stellar youth makes this band particularly useful for performing censuses of stars in star-forming regions, given that not all young stars have infrared excesses. X-ray observations have provided near-complete censuses of all stellar-mass objects in the Orion Nebula Cluster and Taurus Molecular Cloud. The formation of individual stars can only be directly observed in the Milky Way Galaxy, but in distant galaxies star formation has been detected through its unique spectral signature. Initial research indicates star-forming clumps start as giant, dense areas in turbulent gas-rich matter in young galaxies, live about 500 million years, and may migrate to the center of a galaxy, creating the central bulge of a galaxy. On February 21, 2014,
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
announced
greatly upgraded database
for tracking polycyclic aromatic hydrocarbons (PAHs) in the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the univers ...
. According to scientists, more than 20% of the
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
in the universe may be associated with PAHs, possible starting materials for the
formation Formation may refer to: Linguistics * Back-formation, the process of creating a new lexeme by removing or affixes * Word formation, the creation of a new word by adding affixes Mathematics and science * Cave formation or speleothem, a secondar ...
of
life Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energy ...
. PAHs seem to have been formed shortly after the Big Bang, are widespread throughout the universe, and are associated with new stars and
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s. In February 2018, astronomers reported, for the first time, a signal of the reionization epoch, an indirect detection of light from the earliest stars formed - about 180 million years after the Big Bang. An article published on October 22, 2019, reported on the detection of
3MM-1 3MM-1 (also known as COS-3mm-1) is a star-forming galaxy about 12.5 billion light-years away that is obscured by clouds of dust. It is located in the constellation of Sextans. It was first detected in spectroscopic data on rotational transitions ...
, a massive star-forming galaxy about 12.5 billion light-years away that is obscured by clouds of
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ...
. At a mass of about 1010.8 solar masses, it showed a star formation rate about 100 times as high as in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
.


Notable pathfinder objects

*
MWC 349 MWC may refer to: * Mark Williams Company, a software company * '' Married... with Children'', a U.S. television situation comedy * Ma Wan Channel, a channel between Ma Wan and Tsing Yi islands in Hong Kong * Mennonite World Conference, a global co ...
was first discovered in 1978, and is estimated to be only 1,000 years old. *VLA 1623 – The first exemplar Class 0 protostar, a type of embedded protostar that has yet to accrete the majority of its mass. Found in 1993, is possibly younger than 10,000 years. *
L1014 L1014 is a dark nebula in the Cygnus constellation. It may be among the most centrally condensed small dark clouds known, perhaps indicative of the earliest stages of star formation processes. This cloud harbors at its core a very young low-mass ...
– An extremely faint embedded object representative of a new class of sources that are only now being detected with the newest telescopes. Their status is still undetermined, they could be the youngest low-mass Class 0 protostars yet seen or even very low-mass evolved objects (like
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s or even rogue planets). * GCIRS 8* – The youngest known main sequence star in the Galactic Center region, discovered in August 2006. It is estimated to be 3.5 million years old.


Low mass and high mass star formation

Stars of different masses are thought to form by slightly different mechanisms. The theory of low-mass star formation, which is well-supported by observation, suggests that low-mass stars form by the gravitational collapse of rotating density enhancements within molecular clouds. As described above, the collapse of a rotating cloud of gas and dust leads to the formation of an accretion disk through which matter is channeled onto a central protostar. For stars with masses higher than about , however, the mechanism of star formation is not well understood. Massive stars emit copious quantities of radiation which pushes against infalling material. In the past, it was thought that this radiation pressure might be substantial enough to halt accretion onto the massive protostar and prevent the formation of stars with masses more than a few tens of solar masses. Recent theoretical work has shown that the production of a jet and outflow clears a cavity through which much of the radiation from a massive protostar can escape without hindering accretion through the disk and onto the protostar. Present thinking is that massive stars may therefore be able to form by a mechanism similar to that by which low mass stars form. There is mounting evidence that at least some massive protostars are indeed surrounded by accretion disks. Several other theories of massive star formation remain to be tested observationally. Of these, perhaps the most prominent is the theory of competitive accretion, which suggests that massive protostars are "seeded" by low-mass protostars which compete with other protostars to draw in matter from the entire parent molecular cloud, instead of simply from a small local region. Another theory of massive star formation suggests that massive stars may form by the coalescence of two or more stars of lower mass.


See also

* * * * * *


References

{{Authority control Stellar astronomy Concepts in astronomy