HOME

TheInfoList



OR:

The Standard Model of
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
is the
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may ...
describing three of the four known fundamental forces ( electromagnetic,
weak Weak may refer to: Songs * "Weak" (AJR song), 2016 * "Weak" (Melanie C song), 2011 * "Weak" (SWV song), 1993 * "Weak" (Skunk Anansie song), 1995 * "Weak", a song by Seether from '' Seether: 2002-2013'' Television episodes * "Weak" (''Fear t ...
and
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
s - excluding gravity) in the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the univers ...
and classifying all known
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...
s. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the
top quark The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard ...
(1995), the tau neutrino (2000), and the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Stan ...
(2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated huge successes in providing experimental predictions, it leaves some phenomena unexplained. It falls short of being a complete theory of fundamental interactions. For example, it does not fully explain baryon asymmetry, incorporate the full
theory of gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
as described by
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, or account for the universe's accelerating expansion as possibly described by
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
. The model does not contain any viable
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not ...
particle that possesses all of the required properties deduced from observational
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
. It also does not incorporate neutrino oscillations and their non-zero masses. The development of the Standard Model was driven by theoretical and experimental particle physicists alike. The Standard Model is a paradigm of a quantum field theory for theorists, exhibiting a wide range of phenomena, including spontaneous symmetry breaking, anomalies, and non-perturbative behavior. It is used as a basis for building more exotic models that incorporate
hypothetical particle This is a list of known and hypothesized particles. Elementary particles Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental ob ...
s, extra dimensions, and elaborate symmetries (such as supersymmetry) to explain experimental results at variance with the Standard Model, such as the existence of dark matter and neutrino oscillations.


Historical background

In 1954, Yang Chen-Ning and Robert Mills extended the concept of
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie grou ...
for
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s, e.g. quantum electrodynamics, to nonabelian groups to provide an explanation for
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
s. In 1957, Chien-Shiung Wu demonstrated
parity Parity may refer to: * Parity (computing) ** Parity bit in computing, sets the parity of data for the purpose of error detection ** Parity flag in computing, indicates if the number of set bits is odd or even in the binary representation of the ...
was not conserved in the weak interaction. In 1961, Sheldon Glashow combined the electromagnetic and weak interactions. In 1967 Steven Weinberg and
Abdus Salam Mohammad Abdus Salam Salam adopted the forename "Mohammad" in 1974 in response to the anti-Ahmadiyya decrees in Pakistan, similarly he grew his beard. (; ; 29 January 192621 November 1996) was a Punjabis, Punjabi Pakistani theoretical physici ...
incorporated the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property " mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other b ...
into Glashow's electroweak interaction, giving it its modern form. The Higgs mechanism is believed to give rise to the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
es of all the
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...
s in the Standard Model. This includes the masses of the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
, and the masses of the fermions, i.e. the quarks and leptons. After the neutral weak currents caused by Z boson exchange were discovered at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gen ...
in 1973, the electroweak theory became widely accepted and Glashow, Salam, and Weinberg shared the 1979
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
for discovering it. The W± and Z0 bosons were discovered experimentally in 1983; and the ratio of their masses was found to be as the Standard Model predicted. The theory of the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
(i.e. quantum chromodynamics, QCD), to which many contributed, acquired its modern form in 1973–74 when asymptotic freedom was proposed (a development which made QCD the main focus of theoretical research) and experiments confirmed that the
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s were composed of fractionally charged quarks. The term "Standard Model" was first coined by Abraham Pais and Sam Treiman in 1975, with reference to the electroweak theory with four quarks. According to Steven Weinberg, he came up with the term and used it in 1973 during a talk in Aix-en-Provence in France.


Particle content

The Standard Model includes members of several classes of elementary particles, which in turn can be distinguished by other characteristics, such as color charge. All particles can be summarized as follows:


Fermions

The Standard Model includes 12
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, ...
s of spin , known as fermions. According to the spin–statistics theorem, fermions respect the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formula ...
. Each fermion has a corresponding antiparticle. Fermions are classified according to how they interact (or equivalently, by what
charges Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
they carry). There are six quarks ( up, down,
charm Charm may refer to: Social science * Charisma, a person or thing's pronounced ability to attract others * Superficial charm, flattery, telling people what they want to hear Science and technology * Charm quark, a type of elementary particle * Ch ...
, strange, top, bottom), and six leptons (
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
, electron neutrino, muon, muon neutrino, tau, tau neutrino). Each class is divided into pairs of particles that exhibit a similar physical behavior called a generation (see the table). The defining property of quarks is that they carry color charge, and hence interact via the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
. The phenomenon of color confinement results in quarks being very strongly bound to one another, forming color-neutral composite particles called
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ...
s that contain either a quark and an antiquark ( mesons) or three quarks (
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
s). The lightest baryons are the proton and the
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
. Quarks also carry
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons res ...
and weak isospin. Hence they interact with other fermions via
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
and the weak interaction. The remaining six fermions do not carry color charge and are called leptons. The three neutrinos do not carry electric charge either, so their motion is directly influenced only by the
weak nuclear force In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interacti ...
and gravity, which makes them notoriously difficult to detect. By contrast, by virtue of carrying an electric charge, the electron, muon, and tau all interact electromagnetically. Each member of a generation has greater mass than the corresponding particle of any generation before it. The first-generation charged particles do not decay, hence all ordinary (
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifie ...
ic) matter is made of such particles. Specifically, all atoms consist of electrons orbiting around
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, ultimately constituted of up and down quarks. On the other hand, second- and third-generation charged particles decay with very short half-lives and are observed only in very high-energy environments. Neutrinos of all generations also do not decay, and pervade the universe, but rarely interact with baryonic matter.


Gauge bosons

In the Standard Model,
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of ga ...
s are defined as
force carrier In quantum field theory, a force carrier, also known as messenger particle or intermediate particle, is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical fi ...
s that mediate the strong, weak, and electromagnetic fundamental interactions. Interactions in physics are the ways that particles influence other particles. At a macroscopic level, electromagnetism allows particles to interact with one another via electric and magnetic fields, and gravitation allows particles with mass to attract one another in accordance with Einstein's theory of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. The Standard Model explains such forces as resulting from matter particles exchanging other particles, generally referred to as ''force mediating particles''. When a force-mediating particle is exchanged, the effect at a macroscopic level is equivalent to a force influencing both of them, and the particle is therefore said to have ''mediated'' (i.e., been the agent of) that force. The Feynman diagram calculations, which are a graphical representation of the
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
approximation, invoke "force mediating particles", and when applied to analyze high-energy scattering experiments are in reasonable agreement with the data. However, perturbation theory (and with it the concept of a "force-mediating particle") fails in other situations. These include low-energy quantum chromodynamics, bound states, and
soliton In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the me ...
s. The gauge bosons of the Standard Model all have spin (as do matter particles). The value of the spin is 1, making them bosons. As a result, they do not follow the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formula ...
that constrains fermions: thus bosons (e.g. photons) do not have a theoretical limit on their spatial density (number per volume). The types of gauge bosons are described below. *
Photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
s mediate the electromagnetic force between electrically charged particles. The photon is massless and is well-described by the theory of quantum electrodynamics. * The , , and gauge bosons mediate the weak interactions between particles of different flavours (all quarks and leptons). They are massive, with the being more massive than the . The weak interactions involving the act only on ''left-handed'' particles and ''right-handed'' antiparticles. The carries an electric charge of +1 and −1 and couples to the electromagnetic interaction. The electrically neutral boson interacts with both left-handed particles and right-handed antiparticles. These three gauge bosons along with the photons are grouped together, as collectively mediating the electroweak interaction. * The eight gluons mediate the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
s between color charged particles (the quarks). Gluons are massless. The eightfold multiplicity of gluons is labeled by a combination of color and anticolor charge (e.g. red–antigreen). Because gluons have an effective color charge, they can also interact among themselves. Gluons and their interactions are described by the theory of quantum chromodynamics. The interactions between all the particles described by the Standard Model are summarized by the diagrams on the right of this section.


Higgs boson

The Higgs particle is a massive scalar elementary particle theorized by
Peter Higgs Peter Ware Higgs (born 29 May 1929) is a British theoretical physicist, Emeritus Professor in the University of Edinburgh,Griggs, Jessica (Summer 2008The Missing Piece ''Edit'' the University of Edinburgh Alumni Magazine, p. 17 and Nobel Prize ...
in 1964, when he showed that Goldstone's 1962 theorem (generic continuous symmetry, which is spontaneously broken) provides a third polarisation of a massive vector field. Hence, Goldstone's original scalar doublet, the massive spin-zero particle, was proposed as the Higgs boson, and is a key building block in the Standard Model. It has no intrinsic spin, and for that reason is classified as a boson (like the gauge bosons, which have
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
spin). The Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
and gluon, are massive. In particular, the Higgs boson explains why the photon has no mass, while the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
are very heavy. Elementary-particle masses, and the differences between
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
(mediated by the photon) and the weak force (mediated by the W and Z bosons), are critical to many aspects of the structure of microscopic (and hence macroscopic) matter. In electroweak theory, the Higgs boson generates the masses of the leptons (electron, muon, and tau) and quarks. As the Higgs boson is massive, it must interact with itself. Because the Higgs boson is a very massive particle and also decays almost immediately when created, only a very high-energy particle accelerator can observe and record it. Experiments to confirm and determine the nature of the Higgs boson using the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundr ...
(LHC) at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gen ...
began in early 2010 and were performed at
Fermilab Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been oper ...
's Tevatron until its closure in late 2011. Mathematical consistency of the Standard Model requires that any mechanism capable of generating the masses of elementary particles must become visible at energies above ; therefore, the LHC (designed to collide two proton beams) was built to answer the question of whether the Higgs boson actually exists. On 4 July 2012, two of the experiments at the LHC (
ATLAS An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geogra ...
and
CMS CMS may refer to: Computing * Call management system * CMS-2 (programming language), used by the United States Navy * Code Morphing Software, a technology used by Transmeta * Collection management system for a museum collection * Color manage ...
) both reported independently that they had found a new particle with a mass of about (about 133 proton masses, on the order of ), which is "consistent with the Higgs boson". On 13 March 2013, it was confirmed to be the searched-for Higgs boson.


Theoretical aspects


Construction of the Standard Model Lagrangian

Technically, quantum field theory provides the mathematical framework for the Standard Model, in which a Lagrangian controls the dynamics and kinematics of the theory. Each kind of particle is described in terms of a dynamical field that pervades space-time. The construction of the Standard Model proceeds following the modern method of constructing most field theories: by first postulating a set of symmetries of the system, and then by writing down the most general renormalizable Lagrangian from its particle (field) content that observes these symmetries. The global Poincaré symmetry is postulated for all relativistic quantum field theories. It consists of the familiar translational symmetry,
rotational symmetry Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which ...
and the inertial reference frame invariance central to the theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The law ...
. The local SU(3)×SU(2)×U(1) gauge symmetry is an
internal symmetry In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continuo ...
that essentially defines the Standard Model. Roughly, the three factors of the gauge symmetry give rise to the three fundamental interactions. The fields fall into different representations of the various symmetry groups of the Standard Model (see table). Upon writing the most general Lagrangian, one finds that the dynamics depends on 19 parameters, whose numerical values are established by experiment. The parameters are summarized in the table (made visible by clicking "show") above.


Quantum chromodynamics sector

The quantum chromodynamics (QCD) sector defines the interactions between quarks and gluons, which is a Yang–Mills gauge theory with SU(3) symmetry, generated by . Since leptons do not interact with gluons, they are not affected by this sector. The Dirac Lagrangian of the quarks coupled to the gluon fields is given by \mathcal_\text = \sum_\psi \overline_i \left( i\gamma^\mu(\partial_\mu\delta_ - i g_s G_\mu^a T^a_)\right) \psi_j - \frac G^a_ G^_a, where * is the Dirac spinor of the quark field, where ''i'' = represents color, * are the
Dirac matrices In mathematical physics, the gamma matrices, \left\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(\mat ...
, * is the 8-component (a = 1, 2, \dots, 8) SU(3) gauge field, * are the 3 × 3 Gell-Mann matrices, generators of the SU(3) color group, * represents the gluon field strength tensor, * is the strong coupling constant.


Electroweak sector

The electroweak sector is a Yang–Mills gauge theory with the symmetry group U(1) × SU(2)L, \mathcal_\text = \sum_\psi \bar\psi \gamma^\mu \left(i\partial_\mu - g' \tfrac12 Y_\text B_\mu - g \tfrac \vec\tau_\text \vec W_\mu\right)\psi - \tfrac W_a^ W_^a - \tfrac B^ B_, where * is the U(1) gauge field, * is the weak hypercharge – the generator of the U(1) group, * is the 3-component SU(2) gauge field, * are the Pauli matrices – infinitesimal generators of the SU(2) group – with subscript L to indicate that they only act on ''left''-chiral fermions, * and are the U(1) and SU(2) coupling constants respectively, * W^ (a = 1, 2, 3) and B^ are the field strength tensors for the weak isospin and weak hypercharge fields. Notice that the addition of fermion mass terms into the electroweak Lagrangian is forbidden, since terms of the form m\overline\psi\psi do not respect U(1) × SU(2)L gauge invariance. Neither is it possible to add explicit mass terms for the U(1) and SU(2) gauge fields. The Higgs mechanism is responsible for the generation of the gauge boson masses, and the fermion masses result from Yukawa-type interactions with the Higgs field.


Higgs sector

In the Standard Model, the
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the St ...
is a complex scalar of the group SU(2)L: \varphi = \frac \begin \varphi^+ \\ \varphi^0 \end, where the superscripts + and 0 indicate the electric charge () of the components. The weak hypercharge () of both components is 1. Before symmetry breaking, the Higgs Lagrangian is \mathcal_\text = \varphi^\dagger \left(\partial^\mu - \frac \left( g'Y_\text B^\mu + g \vec\tau \vec W^\mu \right)\right) \left(\partial_\mu + \frac \left( g'Y_\text B_\mu + g \vec\tau \vec W_\mu \right)\right)\varphi - \frac \left(\varphi^\dagger \varphi - v^2\right)^2, which up to a divergence term, (i.e., after partial integration) can also be written as \mathcal_\text = \left, \left(\partial_\mu + \frac \left( g'Y_\text B_\mu + g \vec\tau \vec W_\mu \right)\right)\varphi\^2 - \frac \left(\varphi^\dagger \varphi - v^2\right)^2. The Higgs self-coupling strength is approximately . This is not included in the table above because it can be derived from the mass (after symmetry breaking) and the vacuum expectation value.


Yukawa sector

The Yukawa interaction terms are \mathcal_\text = \overline U_ G_ U_ \varphi^0 - \overline D_ G_ U_ \varphi^- + \overline U_ G_ D_ \varphi^+ + \overline D_ G_ D_ \varphi^0 + \mathrm, where are matrices of Yukawa couplings, with the term giving the coupling of the generations and , and h.c. means Hermitian conjugate of preceding terms.


Fundamental interactions

The Standard Model describes three of the four fundamental interactions in nature; only gravity remains unexplained. In the Standard Model, such an interaction is described as an exchange of bosons between the objects affected, such as a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alwa ...
for the electromagnetic force and a gluon for the strong interaction. Those particles are called
force carrier In quantum field theory, a force carrier, also known as messenger particle or intermediate particle, is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical fi ...
s or messenger particles.


Gravity

Despite being perhaps the most familiar fundamental interaction, gravity is not described by the Standard Model, due to contradictions that arise when combining general relativity, the modern theory of gravity, and quantum mechanics. However, gravity is so weak at microscopic scales, that it is essentially unmeasurable. The graviton is postulated as the mediating particle.


Electromagnetism

Electromagnetism is the only long-range force in the Standard Model. It is mediated by photons and couples to electric charge. Electromagnetism is responsible for a wide range of phenomena including atomic electron shell structure, chemical bonds, electric circuits and
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
. Electromagnetic interactions in the Standard Model are described by quantum electrodynamics.


Weak nuclear force

The weak interaction is responsible for various forms of particle decay, such as
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
. It is weak and short-range, due to the fact that the weak mediating particles, W and Z bosons, have mass. W bosons have electric charge and mediate interactions that change the particle type (referred to as flavour) and charge. Interactions mediated by W bosons are charged current interactions. Z bosons are neutral and mediate neutral current interactions, which do not change particle flavour. Thus Z bosons are similar to the photon, aside from them being massive and interacting with the neutrino. The weak interaction is also the only interaction to violate
parity Parity may refer to: * Parity (computing) ** Parity bit in computing, sets the parity of data for the purpose of error detection ** Parity flag in computing, indicates if the number of set bits is odd or even in the binary representation of the ...
and CP. Parity violation is maximal for charged current interactions, since the W boson interacts exclusively with left-handed fermions and right-handed antifermions. In the Standard Model, the weak force is understood in terms of the electroweak theory, which states that the weak and electromagnetic interactions become united into a single ''electroweak'' interaction at high energies.


Strong nuclear force

The strong nuclear force is responsible for hadronic and nuclear binding. It is mediated by gluons, which couple to color charge. Since gluons themselves have color charge, the strong force exhibits
confinement Confinement may refer to * With respect to humans: ** An old-fashioned or archaic synonym for childbirth ** Postpartum confinement (or postnatal confinement), a system of recovery after childbirth, involving rest and special foods ** Civil confi ...
and asymptotic freedom. Confinement means that only color-neutral particles can exist in isolation, therefore quarks can only exist in hadrons and never in isolation, at low energies. Asymptotic freedom means that the strong force becomes weaker, as the energy scale increases. The strong force overpowers the
electrostatic Electrostatics is a branch of physics that studies electric charges at rest ( static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for ...
repulsion of protons and quarks in nuclei and hadrons respectively, at their respective scales. While quarks are bound in hadrons by the fundamental strong interaction, which is mediated by gluons, nucleons are bound by an emergent phenomenon termed the ''residual strong force'' or '' nuclear force''. This interaction is mediated by mesons, such as the pion. The color charges inside the nucleon cancel out, meaning most of the gluon and quark fields cancel out outside of the nucleon. However, some residue is "leaked", which appears as the exchange of virtual mesons, that causes the attractive force between nucleons. The (fundamental) strong interaction is described by quantum chromodynamics, which is a component of the Standard Model.


Tests and predictions

The Standard Model predicted the existence of the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , an ...
, gluon,
top quark The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard ...
and charm quark, and predicted many of their properties before these particles were observed. The predictions were experimentally confirmed with good precision. The Standard Model also predicted the existence of the
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Stan ...
, which was found in 2012 at the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundr ...
, the final fundamental particle predicted by the Standard Model to be experimentally confirmed.


Challenges

Self-consistency of the Standard Model (currently formulated as a non-
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
gauge theory quantized through path-integrals) has not been mathematically proven. While regularized versions useful for approximate computations (for example
lattice gauge theory In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum ...
) exist, it is not known whether they converge (in the sense of S-matrix elements) in the limit that the regulator is removed. A key question related to the consistency is the Yang–Mills existence and mass gap problem. Experiments indicate that neutrinos have
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
, which the classic Standard Model did not allow. To accommodate this finding, the classic Standard Model can be modified to include neutrino mass. If one insists on using only Standard Model particles, this can be achieved by adding a non-renormalizable interaction of leptons with the Higgs boson. On a fundamental level, such an interaction emerges in the
seesaw mechanism In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of th ...
where heavy right-handed neutrinos are added to the theory. This is natural in the left-right symmetric extension of the Standard Model and in certain
grand unified theories A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this ...
. As long as new physics appears below or around 1014 GeV, the neutrino masses can be of the right order of magnitude. Theoretical and experimental research has attempted to extend the Standard Model into a unified field theory or a theory of everything, a complete theory explaining all physical phenomena including constants. Inadequacies of the Standard Model that motivate such research include: * The model does not explain
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
, although physical confirmation of a theoretical particle known as a graviton would account for it to a degree. Though it addresses strong and electroweak interactions, the Standard Model does not consistently explain the canonical theory of gravitation,
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, in terms of quantum field theory. The reason for this is, among other things, that quantum field theories of gravity generally break down before reaching the Planck scale. As a consequence, we have no reliable theory for the very early universe. * Some physicists consider it to be ''ad hoc'' and inelegant, requiring 19 numerical constants whose values are unrelated and arbitrary. Although the Standard Model, as it now stands, can explain why neutrinos have masses, the specifics of neutrino mass are still unclear. It is believed that explaining neutrino mass will require an additional 7 or 8 constants, which are also arbitrary parameters. * The Higgs mechanism gives rise to the
hierarchy problem In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than grav ...
if some new physics (coupled to the Higgs) is present at high energy scales. In these cases, in order for the weak scale to be much smaller than the Planck scale, severe fine tuning of the parameters is required; there are, however, other scenarios that include quantum gravity in which such fine tuning can be avoided. There are also issues of quantum triviality, which suggests that it may not be possible to create a consistent quantum field theory involving elementary scalar particles. * The model is inconsistent with the emerging
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda ( Greek Λ) associated ...
of cosmology. Contentions include the absence of an explanation in the Standard Model of particle physics for the observed amount of
cold dark matter In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a sm ...
(CDM) and its contributions to
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
, which are many orders of magnitude too large. It is also difficult to accommodate the observed predominance of matter over antimatter (
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
/ antimatter asymmetry). The
isotropy Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also used to describ ...
and
homogeneity Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, size, ...
of the visible universe over large distances seems to require a mechanism like cosmic
inflation In economics, inflation is an increase in the general price level of goods and services in an economy. When the general price level rises, each unit of currency buys fewer goods and services; consequently, inflation corresponds to a reduct ...
, which would also constitute an extension of the Standard Model. Currently, no proposed theory of everything has been widely accepted or verified.


See also

*
Yang–Mills theory In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(''N''), or more generally any compact, reductive Lie algebra. Yang–Mills theory seeks to describe the behavior of elementary particles using t ...
* Fundamental interaction: ** Quantum electrodynamics **
Strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called th ...
: Color charge, Quantum chromodynamics,
Quark model In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
** Weak interaction: Electroweak interaction,
Fermi's interaction In particle physics, Fermi's interaction (also the Fermi theory of beta decay or the Fermi four-fermion interaction) is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interactin ...
, Weak hypercharge, Weak isospin *
Gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie grou ...
:
Introduction to gauge theory A gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance (as in railroad tracks), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a num ...
* Generation *
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property " mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other b ...
:
Higgs boson The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Stan ...
,
Alternatives to the Standard Higgs Model The Alternative models to the Standard Higgs Model are models which are considered by many particle physicists to solve some of the Higgs boson's existing problems. Two of the most currently researched models are quantum triviality, and Higgs hier ...
* Lagrangian * Open questions:
CP violation In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry ( parity symmetry). CP-symmetry states that the laws of physics should be t ...
,
Neutrino mass A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
es, QCD matter, Quantum triviality * Quantum field theory * Standard Model: Mathematical formulation of, Physics beyond the Standard Model * Electron electric dipole moment


Notes


References


Further reading

* * *


Introductory textbooks

* * * * *


Advanced textbooks

* Highlights the
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie grou ...
aspects of the Standard Model. * Highlights dynamical and phenomenological aspects of the Standard Model. * * 920 pages. * 952 pages. * 670 pages. Highlights group-theoretical aspects of the Standard Model.


Journal articles

* * * * * *


External links

*
The Standard Model explained in Detail by CERN's John Ellis
omega tau podcast.
The Standard Model
on the CERN website explains how the basic building blocks of matter interact, governed by four fundamental forces.
Particle Physics: Standard Model
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birthday was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an American physicis ...
lectures (2010). {{Authority control Concepts in physics Particle physics