HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, a sphere packing is an arrangement of non-overlapping
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is th ...
s within a containing space. The spheres considered are usually all of identical size, and the space is usually three-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
al
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
. However, sphere
packing problem Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few conta ...
s can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes
circle packing In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap. The associated '' packing de ...
in two dimensions, or
hypersphere In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, call ...
packing in higher dimensions) or to non-Euclidean spaces such as
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
. A typical sphere packing problem is to find an arrangement in which the spheres fill as much of the space as possible. The proportion of space filled by the spheres is called the ''
packing density A packing density or packing fraction of a packing in some space is the fraction of the space filled by the figures making up the packing. In simplest terms, this is the ratio of the volume of bodies in a space to the volume of the space itself. I ...
'' of the arrangement. As the local density of a packing in an infinite space can vary depending on the volume over which it is measured, the problem is usually to maximise the
average In ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7 ...
or asymptotic density, measured over a large enough volume. For equal spheres in three dimensions, the densest packing uses approximately 74% of the volume. A random packing of equal spheres generally has a density around 63.5%.


Classification and terminology

A
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
arrangement (commonly called a regular arrangement) is one in which the centers of the spheres form a very symmetric pattern which needs only ''n'' vectors to be uniquely defined (in ''n''-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
al
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
). Lattice arrangements are periodic. Arrangements in which the spheres do not form a lattice (often referred to as irregular) can still be periodic, but also aperiodic (properly speaking non-periodic) or random. Because of their high degree of symmetry, lattice packings are easier to classify than non-lattice ones. Periodic lattices always have well-defined densities.


Regular packing


Dense packing

In three-dimensional Euclidean space, the densest packing of equal spheres is achieved by a family of structures called close-packed structures. One method for generating such a structure is as follows. Consider a plane with a compact arrangement of spheres on it. Call it A. For any three neighbouring spheres, a fourth sphere can be placed on top in the hollow between the three bottom spheres. If we do this for half of the holes in a second plane above the first, we create a new compact layer. There are two possible choices for doing this, call them B and C. Suppose that we chose B. Then one half of the hollows of B lies above the centers of the balls in A and one half lies above the hollows of A which were not used for B. Thus the balls of a third layer can be placed either directly above the balls of the first one, yielding a layer of type A, or above the holes of the first layer which were not occupied by the second layer, yielding a layer of type C. Combining layers of types A, B, and C produces various close-packed structures. Two simple arrangements within the close-packed family correspond to regular lattices. One is called cubic close packing (or
face-centred cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
, "FCC")—where the layers are alternated in the ABCABC... sequence. The other is called hexagonal close packing ("HCP")—where the layers are alternated in the ABAB... sequence. But many layer stacking sequences are possible (ABAC, ABCBA, ABCBAC, etc.), and still generate a close-packed structure. In all of these arrangements each sphere touches 12 neighboring spheres,Granular crystallisation in vibrated packing
Granular Matter (2019), 21(2), 26
HAL Archives Ouvertes
and the average density is :\frac \simeq 0.74048.
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
proved in 1831 that these packings have the highest density amongst all possible lattice packings. In 1611, Johannes Kepler conjectured that this is the maximum possible density amongst both regular and irregular arrangements—this became known as the
Kepler conjecture The Kepler conjecture, named after the 17th-century mathematician and astronomer Johannes Kepler, is a mathematical theorem about sphere packing in three-dimensional Euclidean space. It states that no arrangement of equally sized spheres filling s ...
. In 1998,
Thomas Callister Hales Thomas Callister Hales (born June 4, 1958) is an American mathematician working in the areas of representation theory, discrete geometry, and formal verification. In representation theory he is known for his work on the Langlands program and the p ...
, following the approach suggested by László Fejes Tóth in 1953, announced a proof of the Kepler conjecture. Hales' proof is a
proof by exhaustion Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equiv ...
involving checking of many individual cases using complex computer calculations. Referees said that they were "99% certain" of the correctness of Hales' proof. On 10 August 2014, Hales announced the completion of a formal proof using automated proof checking, removing any doubt.


Other common lattice packings

Some other lattice packings are often found in physical systems. These include the cubic lattice with a density of \frac \approx 0.5236, the hexagonal lattice with a density of \frac\approx 0.6046 and the tetrahedral lattice with a density of \frac\approx 0.3401, and loosest possible at a density of 0.0555.


Jammed packings with a low density

Packings where all spheres are constrained by their neighbours to stay in one location are called rigid or jammed. The strictly jammed sphere packing with the lowest density is a diluted ("tunneled") fcc crystal with a density of only 0.49365.


Irregular packing

If we attempt to build a densely packed collection of spheres, we will be tempted to always place the next sphere in a hollow between three packed spheres. If five spheres are assembled in this way, they will be consistent with one of the regularly packed arrangements described above. However, the sixth sphere placed in this way will render the structure inconsistent with any regular arrangement. This results in the possibility of a ''random close packing'' of spheres which is stable against compression. Vibration of a random loose packing can result in the arrangement of spherical particles into regular packings, a process known as granular crystallisation. Such processes depend on the geometry of the container holding the spherical grains. When spheres are randomly added to a container and then compressed, they will generally form what is known as an "irregular" or "jammed" packing configuration when they can be compressed no more. This irregular packing will generally have a density of about 64%. Recent research predicts analytically that it cannot exceed a density limit of 63.4% This situation is unlike the case of one or two dimensions, where compressing a collection of 1-dimensional or 2-dimensional spheres (that is, line segments or circles) will yield a regular packing.


Hypersphere packing

The sphere packing problem is the three-dimensional version of a class of ball-packing problems in arbitrary dimensions. In two dimensions, the equivalent problem is packing circles on a plane. In one dimension it is packing line segments into a linear universe. In dimensions higher than three, the densest regular packings of hyperspheres are known up to 8 dimensions. Very little is known about irregular hypersphere packings; it is possible that in some dimensions the densest packing may be irregular. Some support for this conjecture comes from the fact that in certain dimensions (e.g. 10) the densest known irregular packing is denser than the densest known regular packing. In 2016, Maryna Viazovska announced a proof that the E8 lattice provides the optimal packing (regardless of regularity) in eight-dimensional space, and soon afterwards she and a group of collaborators announced a similar proof that the
Leech lattice In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by . It may also have been discovered (but not published) by ...
is optimal in 24 dimensions. This result built on and improved previous methods which showed that these two lattices are very close to optimal. The new proofs involve using the Laplace transform of a carefully chosen
modular function In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of ...
to construct a radially symmetric function such that and its Fourier transform both equal one at the origin, and both vanish at all other points of the optimal lattice, with negative outside the central sphere of the packing and positive. Then, the
Poisson summation formula In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of ...
for is used to compare the density of the optimal lattice with that of any other packing. Before the proof had been formally refereed and published, mathematician
Peter Sarnak Peter Clive Sarnak (born 18 December 1953) is a South African-born mathematician with dual South-African and American nationalities. Sarnak has been a member of the permanent faculty of the School of Mathematics at the Institute for Advanced St ...
called the proof "stunningly simple" and wrote that "You just start reading the paper and you know this is correct." Another line of research in high dimensions is trying to find asymptotic bounds for the density of the densest packings. As of 2017, it is known that for large , the densest lattice in dimension has density between (for some constant ) and . Conjectural bounds lie in between.


Unequal sphere packing

Many problems in the chemical and physical sciences can be related to packing problems where more than one size of sphere is available. Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or
interstitial An interstitial space or interstice is a space between structures or objects. In particular, interstitial may refer to: Biology * Interstitial cell tumor * Interstitial cell, any cell that lies between other cells * Interstitial collagenase ...
packing. When many sizes of spheres (or a distribution) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are available. When the second sphere is much smaller than the first, it is possible to arrange the large spheres in a close-packed arrangement, and then arrange the small spheres within the octahedral and tetrahedral gaps. The density of this interstitial packing depends sensitively on the radius ratio, but in the limit of extreme size ratios, the smaller spheres can fill the gaps with the same density as the larger spheres filled space. Even if the large spheres are not in a close-packed arrangement, it is always possible to insert some smaller spheres of up to 0.29099 of the radius of the larger sphere. When the smaller sphere has a radius greater than 0.41421 of the radius of the larger sphere, it is no longer possible to fit into even the octahedral holes of the close-packed structure. Thus, beyond this point, either the host structure must expand to accommodate the interstitials (which compromises the overall density), or rearrange into a more complex crystalline compound structure. Structures are known which exceed the close packing density for radius ratios up to 0.659786. Upper bounds for the density that can be obtained in such binary packings have also been obtained. In many chemical situations such as
ionic crystal In chemistry, an ionic crystal is a crystalline form of an ionic compound. They are solids consisting of ions bound together by their electrostatic attraction into a regular lattice. Examples of such crystals are the alkali halides, including ...
s, the stoichiometry is constrained by the charges of the constituent ions. This additional constraint on the packing, together with the need to minimize the Coulomb energy of interacting charges leads to a diversity of optimal packing arrangements.


Hyperbolic space

Although the concept of circles and spheres can be extended to
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
, finding the densest packing becomes much more difficult. In a hyperbolic space there is no limit to the number of spheres that can surround another sphere (for example,
Ford circle In mathematics, a Ford circle is a circle with center at (p/q,1/(2q^2)) and radius 1/(2q^2), where p/q is an irreducible fraction, i.e. p and q are coprime integers. Each Ford circle is tangent to the horizontal axis y=0, and any two Ford circles ...
s can be thought of as an arrangement of identical hyperbolic circles in which each circle is surrounded by an
infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
number of other circles). The concept of average density also becomes much more difficult to define accurately. The densest packings in any hyperbolic space are almost always irregular. Despite this difficulty, K. Böröczky gives a universal upper bound for the density of sphere packings of hyperbolic ''n''-space where ''n'' ≥ 2. In three dimensions the Böröczky bound is approximately 85.327613%, and is realized by the horosphere packing of the order-6 tetrahedral honeycomb with Schläfli symbol . In addition to this configuration at least three other horosphere packings are known to exist in hyperbolic 3-space that realize the density upper bound.


Touching pairs, triplets, and quadruples

The contact graph of an arbitrary finite packing of unit balls is the graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. The cardinality of the edge set of the contact graph gives the number of touching pairs, the number of 3-cycles in the contact graph gives the number of touching triplets, and the number of tetrahedrons in the contact graph gives the number of touching quadruples (in general for a contact graph associated with a sphere packing in ''n'' dimensions that the cardinality of the set of ''n''-simplices in the contact graph gives the number of touching (''n'' + 1)-tuples in the sphere packing). In the case of 3-dimensional Euclidean space, non-trivial upper bounds on the number of touching pairs, triplets, and quadruples were proved by Karoly Bezdek and Samuel Reid at the University of Calgary. The problem of finding the arrangement of ''n'' identical spheres that maximizes the number of contact points between the spheres is known as the "sticky-sphere problem". The maximum is known for ''n'' ≤ 11, and only conjectural values are known for larger ''n''.


Other spaces

Sphere packing on the corners of a hypercube (with the spheres defined by
Hamming distance In information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of ''substitutions'' required to chan ...
) corresponds to designing error-correcting codes: if the spheres have radius ''t'', then their centers are codewords of a (2''t'' + 1)-error-correcting code. Lattice packings correspond to linear codes. There are other, subtler relationships between Euclidean sphere packing and error-correcting codes. For example, the binary Golay code is closely related to the 24-dimensional Leech lattice. For further details on these connections, see the book ''Sphere Packings, Lattices and Groups'' by Conway and Sloane.


See also

* Close-packing of equal spheres * Apollonian sphere packing * Finite sphere packing * Hermite constant *
Inscribed sphere In geometry, the inscribed sphere or insphere of a convex polyhedron is a sphere that is contained within the polyhedron and tangent to each of the polyhedron's faces. It is the largest sphere that is contained wholly within the polyhedron, and i ...
* Kissing number problem * Sphere-packing bound *
Random close pack Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the containe ...
*
Cylinder sphere packing Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude ...


References


Bibliography

* * *


External links

* Dana Mackenzie (May 2002
"''A fine mess''"
(New Scientist) :A non-technical overview of packing in hyperbolic space. *

(T. E. Dorozinski)
"3D Sphere Packing Applet"
Sphere Packing java applet

java applet
"Database of sphere packings"
(Erik Agrell) {{Packing problem Discrete geometry Crystallography Packing problems Spheres