HOME

TheInfoList



OR:

In
mathematical logic Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of forma ...
and
philosophy Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. ...
, Skolem's paradox is a seeming contradiction that arises from the downward
Löwenheim–Skolem theorem In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem. The precise formulation is given below. It implies that if a countable first-ord ...
. Thoralf Skolem (1922) was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the relativity of set-theoretic notions now known as non- absoluteness. Although it is not an actual
antinomy Antinomy (Greek ἀντί, ''antí'', "against, in opposition to", and νόμος, ''nómos'', "law") refers to a real or apparent mutual incompatibility of two laws. It is a term used in logic and epistemology, particularly in the philosophy of I ...
like
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains ...
, the result is typically called a
paradox A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...
and was described as a "paradoxical state of affairs" by Skolem (1922: p. 295). Skolem's paradox is that every
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
axiomatisation of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
in
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifie ...
, if it is consistent, has a model that is countable. This appears contradictory because it is possible to prove, from those same axioms, a sentence that intuitively says (or that precisely says in the standard model of the theory) that there exist sets that are not countable. Thus the seeming contradiction is that a model that is itself countable, and which therefore contains only countable sets, satisfies the first-order sentence that intuitively states "there are uncountable sets". A mathematical explanation of the paradox, showing that it is not a contradiction in mathematics, was given by Skolem (1922). Skolem's work was harshly received by
Ernst Zermelo Ernst Friedrich Ferdinand Zermelo (, ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel axiomatic ...
, who argued against the limitations of first-order logic, but the result quickly came to be accepted by the mathematical community. The philosophical implications of Skolem's paradox have received much study. One line of inquiry questions whether it is accurate to claim that any first-order sentence actually states "there are uncountable sets". This line of thought can be extended to question whether any set is uncountable in an absolute sense. More recently, the paper "Models and Reality" by
Hilary Putnam Hilary Whitehall Putnam (; July 31, 1926 – March 13, 2016) was an American philosopher, mathematician, and computer scientist, and a major figure in analytic philosophy in the second half of the 20th century. He made significant contributions ...
, and responses to it, led to renewed interest in the philosophical aspects of Skolem's result.


Background

One of the earliest results in
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concern ...
, published by
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance o ...
in 1874, was the existence of uncountable sets, such as the
powerset In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
of the
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
, the set of
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every re ...
, and the
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883. T ...
. An infinite set ''X'' is countable if there is a function that gives a
one-to-one correspondence In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
between ''X'' and the natural numbers, and is uncountable if there is no such correspondence function. When Zermelo proposed his axioms for set theory in 1908, he proved
Cantor's theorem In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be ...
from them to demonstrate their strength. Löwenheim (1915) and Skolem (1920, 1923) proved the
Löwenheim–Skolem theorem In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem. The precise formulation is given below. It implies that if a countable first-ord ...
. The downward form of this theorem shows that if a
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
first-order In mathematics and other formal sciences, first-order or first order most often means either: * "linear" (a polynomial of degree at most one), as in first-order approximation and other calculus uses, where it is contrasted with "polynomials of hig ...
axiomatisation is satisfied by any infinite
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such a ...
, then the same axioms are satisfied by some countable structure. In particular, this implies that if the first-order versions of Zermelo's axioms of set theory are satisfiable, they are satisfiable in some countable model. The same is true for any consistent first-order axiomatisation of set theory.


The paradoxical result and its mathematical implications

Skolem (1922) pointed out the seeming contradiction between the Löwenheim–Skolem theorem on the one hand, which implies that there is a countable model of Zermelo's axioms, and Cantor's theorem on the other hand, which states that uncountable sets exist, and which is provable from Zermelo's axioms. "So far as I know," Skolem writes, "no one has called attention to this peculiar and apparently paradoxical state of affairs. By virtue of the axioms we can prove the existence of higher cardinalities... How can it be, then, that the entire domain ''B'' countable model of Zermelo's axiomscan already be enumerated by means of the finite positive integers?" (Skolem 1922, p. 295, translation by Bauer-Mengelberg). More specifically, let ''B'' be a countable model of Zermelo's axioms. Then there is some set ''u'' in ''B'' such that ''B'' satisfies the first-order formula saying that ''u'' is uncountable. For example, ''u'' could be taken as the set of real numbers in ''B''. Now, because ''B'' is countable, there are only countably many elements ''c'' such that ''c'' ∈ ''u'' according to ''B'', because there are only countably many elements ''c'' in ''B'' to begin with. Thus it appears that ''u'' should be countable. This is Skolem's paradox. Skolem went on to explain why there was no contradiction. In the context of a specific model of set theory, the term "set" does not refer to an arbitrary set, but only to a set that is actually included in the model. The definition of countability requires that a certain one-to-one correspondence, which is itself a set, must exist. Thus it is possible to recognise that a particular set ''u'' is countable, but not countable in a particular model of set theory, because there is no set in the model that gives a one-to-one correspondence between ''u'' and the natural numbers in that model. From an interpretation of the model into our conventional notions of these sets, this means that although ''u'' maps to an uncountable set, there are many elements in our intuitive notion of ''u'' that do not have a corresponding element in the model. The model, however, is consistent, because the absence of these elements cannot be observed through first-order logic. With ''u'' as the reals, these missing elements would correspond to undefinable numbers. Skolem used the term "relative" to describe this state of affairs, where the same set is included in two models of set theory, is countable in one model and not countable in the other model. He described this as the "most important" result in his paper. Contemporary set theorists describe concepts that do not depend on the choice of a
transitive model In mathematical set theory, a transitive model is a model of set theory that is standard and transitive. Standard means that the membership relation is the usual one, and transitive means that the model is a transitive set or class. Examples *An ...
as
absolute Absolute may refer to: Companies * Absolute Entertainment, a video game publisher * Absolute Radio, (formerly Virgin Radio), independent national radio station in the UK * Absolute Software Corporation, specializes in security and data risk manag ...
. From their point of view, Skolem's paradox simply shows that countability is not an absolute property in first-order logic. (Kunen 1980 p. 141; Enderton 2001 p. 152; Burgess 1977 p. 406). Skolem described his work as a critique of (first-order) set theory, intended to illustrate its weakness as a foundational system: : "I believed that it was so clear that axiomatisation in terms of sets was not a satisfactory ultimate foundation of mathematics that mathematicians would, for the most part, not be very much concerned with it. But in recent times I have seen to my surprise that so many mathematicians think that these axioms of set theory provide the ideal foundation for mathematics; therefore it seemed to me that the time had come for a critique." (Ebbinghaus and van Dalen, 2000, p. 147)


Reception by the mathematical community

A central goal of early research into set theory was to find a first-order axiomatisation for set theory which was categorical, meaning that the axioms would have exactly one model, consisting of all sets. Skolem's result showed that this is not possible, creating doubts about the use of set theory as a foundation of mathematics. It took some time for the theory of first-order logic to be developed enough for mathematicians to understand the cause of Skolem's result; no resolution of the paradox was widely accepted during the 1920s. Fraenkel (1928) still described the result as an antinomy: : "Neither have the books yet been closed on the antinomy, nor has agreement on its significance and possible solution yet been reached." (van Dalen and Ebbinghaus, 2000, p. 147). In 1925,
von Neumann Von Neumann may refer to: * John von Neumann (1903–1957), a Hungarian American mathematician * Von Neumann family * Von Neumann (surname), a German surname * Von Neumann (crater), a lunar impact crater See also * Von Neumann algebra * Von Ne ...
presented a novel axiomatisation of set theory, which developed into NBG set theory. Very much aware of Skolem's 1922 paper, von Neumann investigated countable models of his axioms in detail. In his concluding remarks, von Neumann comments that there is no categorical axiomatisation of set theory, or any other theory with an infinite model. Speaking of the impact of Skolem's paradox, he wrote: : "At present we can do no more than note that we have one more reason here to entertain reservations about set theory and that for the time being no way of rehabilitating this theory is known." (Ebbinghaus and van Dalen, 2000, p. 148) Zermelo at first considered the Skolem paradox a hoax (van Dalen and Ebbinghaus, 2000, p. 148 ff.) and spoke against it starting in 1929. Skolem's result applies only to what is now called
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifie ...
, but Zermelo argued against the finitary
metamathematics Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories. Emphasis on metamathematics (and perhaps the creation of the ter ...
that underlie first-order logic (Kanamori 2004, p. 519 ff.). Zermelo argued that his axioms should instead be studied in
second-order logic In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies on ...
, a setting in which Skolem's result does not apply. Zermelo published a second-order axiomatisation in 1930 and proved several categoricity results in that context. Zermelo's further work on the foundations of set theory after Skolem's paper led to his discovery of the
cumulative hierarchy In mathematics, specifically set theory, a cumulative hierarchy is a family of sets W_\alpha indexed by ordinals \alpha such that * W_\alpha \subseteq W_ * If \lambda is a limit ordinal, then W_\lambda = \bigcup_ W_ Some authors additionally r ...
and formalisation of infinitary logic (van Dalen and Ebbinghaus, 2000, note 11). Fraenkel et al. (1973, pp. 303–304) explain why Skolem's result was so surprising to set theorists in the 1920s.
Gödel's completeness theorem Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first-order theory: ...
and the
compactness theorem In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally ...
were not proved until 1929. These theorems illuminated the way that first-order logic behaves and established its finitary nature, although Gödel's original proof of the completeness theorem was complicated.
Leon Henkin Leon Albert Henkin (April 19, 1921, Brooklyn, New York - November 1, 2006, Oakland, California) was an American logician, whose works played a strong role in the development of logic, particularly in the theory of types. He was an active schola ...
's alternative proof of the completeness theorem, which is now a standard technique for constructing countable models of a consistent first-order theory, was not presented until 1947. Thus, in 1922, the particular properties of first-order logic that permit Skolem's paradox to go through were not yet understood. It is now known that Skolem's paradox is unique to first-order logic; if set theory is studied using higher-order logic with full semantics, then it does not have any countable models, due to the semantics being used.


Current mathematical opinion

Current mathematical logicians do not view Skolem's paradox as any sort of fatal flaw in set theory. Kleene (1967, p. 324) describes the result as "not a paradox in the sense of outright contradiction, but rather a kind of anomaly". After surveying Skolem's argument that the result is not contradictory, Kleene concludes: "there is no absolute notion of countability". Hunter (1971, p. 208) describes the contradiction as "hardly even a paradox". Fraenkel et al. (1973, p. 304) explain that contemporary mathematicians are no more bothered by the lack of categoricity of first-order theories than they are bothered by the conclusion of Gödel's incompleteness theorem that no consistent, effective, and sufficiently strong set of first-order axioms is complete. Countable models of ZF have become common tools in the study of set theory. Forcing, for example, is often explained in terms of countable models. The fact that these countable models of ZF still satisfy the theorem that there are uncountable sets is not considered a pathology; van Heijenoort (1967) describes it as "a novel and unexpected feature of formal systems" (van Heijenoort 1967, p. 290).


See also

*


References

* * * * * * * * * * Stephen Cole Kleene, (1952, 1971 with emendations, 1991 10th printing), ''Introduction to Metamathematics'', North-Holland Publishing Company, Amsterdam NY. . cf pages 420-432: § 75. Axiom systems, Skolem's paradox, the natural number sequence. * Stephen Cole Kleene, (1967). ''Mathematical Logic''. * * * * * * English translation:


External links


Vaughan Pratt's celebration of his academic ancestor Skolem's 120th birthday


{{Mathematical logic Inner model theory Mathematical paradoxes Model theory de:Löwenheim-Skolem-Theorem#Das Skolem-Paradoxon