HOME

TheInfoList



OR:

Short QT syndrome (SQT) is a very rare genetic disease of the electrical system of the
heart The heart is a muscular Organ (biology), organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as ca ...
, and is associated with an increased risk of abnormal heart rhythms and sudden cardiac death. The syndrome gets its name from a characteristic feature seen on an electrocardiogram (ECG) – a shortening of the
QT interval The QT interval is a measurement made on an electrocardiogram used to assess some of the electrical properties of the heart. It is calculated as the time from the start of the Q wave to the end of the T wave, and approximates to the time taken ...
. It is caused by mutations in genes encoding
ion channel Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ...
s that shorten the
cardiac action potential The cardiac action potential is a brief change in voltage ( membrane potential) across the cell membrane of heart cells. This is caused by the movement of charged atoms (called ions) between the inside and outside of the cell, through proteins ...
, and appears to be inherited in an
autosomal dominant In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
pattern. The condition is diagnosed using a 12-lead ECG. Short QT syndrome can be treated using an implantable cardioverter-defibrillator or medications including quinidine. Short QT syndrome was first described in 2000, and the first genetic mutation associated with the condition was identified in 2004.


Signs and symptoms

Those affected by short QT syndrome (SQT) have an increased risk of developing abnormal heart rhythms. These abnormal heart rhythms often occur at a young age. They may take relatively benign forms such as atrial fibrillation, leading to symptoms of
palpitations Palpitations are perceived abnormalities of the heartbeat characterized by awareness of cardiac muscle contractions in the chest, which is further characterized by the hard, fast and/or irregular beatings of the heart. Symptoms include a rap ...
, breathlessness, or
fatigue Fatigue describes a state of tiredness that does not resolve with rest or sleep. In general usage, fatigue is synonymous with extreme tiredness or exhaustion that normally follows prolonged physical or mental activity. When it does not resolve ...
. Accordingly, atrial fibrillation presenting in a newborn should raise the suspicion of short QT syndrome. In addition, far more dangerous heart rhythm disturbances such as
ventricular fibrillation Ventricular fibrillation (V-fib or VF) is an abnormal heart rhythm in which the ventricles of the heart quiver. It is due to disorganized electrical activity. Ventricular fibrillation results in cardiac arrest with loss of consciousness and n ...
can also occur in those with short QT syndrome, leading to blackouts or even sudden death. More than a third of those with short QT present with ventricular arrhythmias or sudden cardiac death, while one in five cases are detected during family screening, and one in five cases are found incidentally after an electrocardiogram (ECG) has been recorded for another reason. If someone with short QT syndrome is examined while their heart is beating in an abnormal rhythm such as atrial fibrillation, this can be detected by feeling their pulse. No abnormal signs will usually be found when examining someone with short QT syndrome while their heart is beating in its normal or
sinus rhythm A sinus rhythm is any cardiac rhythm in which depolarisation of the cardiac muscle begins at the sinus node. It is characterised by the presence of correctly oriented P waves on the electrocardiogram (ECG). Sinus rhythm is necessary, but not s ...
.


Cause

Short QT syndrome is a genetic disorder caused by mutations in genes responsible for producing certain
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of i ...
within heart cells. It appears to be inherited in an
autosomal dominant In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
pattern. Some genetic variants cause an increased flow of
potassium Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmos ...
out of the cell, while others reduce the flow of
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
into the cell. The common effect of all these variants is to shorten the
cardiac action potential The cardiac action potential is a brief change in voltage ( membrane potential) across the cell membrane of heart cells. This is caused by the movement of charged atoms (called ions) between the inside and outside of the cell, through proteins ...
, reflected on the surface ECG as a shortening of the QT interval. A list of genes in which variants have been associated with short QT syndrome can be found in the table below.


Mechanism

The overall effect of each of the genetic variants associated with short QT syndrome is to shorten the cardiac action potential, which in turn increases the risk of developing abnormal heart rhythms including atrial fibrillation and ventricular fibrillation. During the normal rhythm of the heart, or sinus rhythm, smooth waves of electrical activity pass regularly through the cardiac muscle. In contrast, during atrial or ventricular fibrillation, waves of electrical activation spiral through the cardiac muscle chaotically in a mass of disorganised, broken wavelets. The consequence of fibrillation is that the chambers of the heart affected by the disorganised electrical activation lose their pumping ability – fibrillation of the cardiac atria in atrial fibrillation leads to an irregular pulse, and fibrillation of the cardiac ventricles in ventricular fibrillation renders the heart unable to pump blood at all. There are several possible mechanisms by which short action potentials might promote fibrillation. The link between these mechanisms is how the duration of the action potential influences how frequently a heart muscle cell can be excited. A shorter action potential generally allow a heart muscle cell to be excited more frequently – the refractory period is shorter. The first mechanism, referred to as the dispersion of repolarisation, occurs because the action potential shortening seen in this condition occurs to a greater extent in some layers of the heart wall than in others. This means that at certain points in the cardiac cycle, some layers of the heart wall will have fully repolarised, and are therefore ready to contract again, while other regions are only partially repolarised and therefore are still within their refractory period and not yet able to be re-excited. If a triggering impulse arrives at this critical point in the cardiac cycle, the wavefront of electrical activation will conduct in some regions but block in others, potentially leading to wavebreak and re-entrant arrhythmias. The second mechanism relates to the increased number of fibrillatory wavelets that can simultaneously exist if the action potential decreases, in a concept known as the arrhythmia wavelength. During fibrillation, the chaotic wavelets rotate, or re-enter, within the muscle of the heart, continually extinguishing and reforming. The volume of tissue in which each wavelet can complete a re-entrant circuit is dependent on the refractory period of the tissue and the speed at which the waves of depolarisation traverse move – the conduction velocity. The product of the conduction velocity and refractory period is known as the wavelength. In tissue with a lower wavelength a wavelet can re-enter within a smaller volume of tissue. A shorter refractory period therefore allows more wavelets to exist within a given volume of tissue, reducing the chance of all wavelets simultaneously extinguishing and terminating the arrhythmia.


Diagnosis

Short QT syndrome is diagnosed primarily using an electrocardiogram (ECG), but may also take into account the clinical history, family history, and possibly
genetic testing Genetic testing, also known as DNA testing, is used to identify changes in DNA sequence or chromosome structure. Genetic testing can also include measuring the results of genetic changes, such as RNA analysis as an output of gene expression, or ...
. Whilst a diagnostic scoring system has been proposed that incorporate all of these factors (the Gollob score), it is uncertain whether this score is useful for diagnosis or risk stratification, and the Gollob score has not been universally accepted by international consensus guidelines. There continues to be uncertainty regarding the precise QT interval cutoff that is should be used for diagnosis.


12-lead ECG

The mainstay of diagnosis of short QT syndrome is the 12-lead ECG. The precise QT duration used to diagnose the condition remains controversial with consensus guidelines giving cutoffs varying from 330 ms, 340 ms or even 360 ms when other clinical, familial, or genetic factors are present. The QT interval normally varies with heart rate, but this variation occurs to a lesser extent in those with short QT syndrome. It is therefore recommended that the QT interval is assessed at heart rates close to 60 beats per minute. Other features that may be seen on the ECG in short QT syndrome include tall, peaked T-waves and PR segment depression.


Other features supporting diagnosis

Other features that support a diagnosis of short QT syndrome include: a history of
ventricular fibrillation Ventricular fibrillation (V-fib or VF) is an abnormal heart rhythm in which the ventricles of the heart quiver. It is due to disorganized electrical activity. Ventricular fibrillation results in cardiac arrest with loss of consciousness and n ...
or
ventricular tachycardia Ventricular tachycardia (V-tach or VT) is a fast heart rate arising from the lower chambers of the heart. Although a few seconds of VT may not result in permanent problems, longer periods are dangerous; and multiple episodes over a short period ...
despite an apparently structurally normal heart; a family history of confirmed short QT syndrome; a family history of sudden cardiac death aged <40 years; and identification of a
genetic mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, ...
consistent with short QT syndrome. Invasive electrophysiological studies, in which wires are passed into the heart to stimulate and record the heart's electrical impulses, are not currently recommended for diagnosing short QT syndrome or predicting the risk of sudden cardiac death.


Treatment

The treatment for short QT syndrome is aimed at preventing abnormal heart rhythms and reducing the risk of sudden cardiac death. It has been difficult to experimentally test potential treatments as the condition is very rare, so the evidence for treatment effectiveness comes largely from consensus opinion. In addition to treating the person identified as having the condition, screening of family members may be recommended.


Implantable cardioverter-defibrillator

In those with short QT syndrome who have already experienced a life-threatening abnormal heart rhythm such as ventricular fibrillation, an implantable cardioverter-defibrillator (ICD) may be recommended to reduce the chance of sudden death. This device is implanted under the skin and can continually monitor the heart rhythm. If the device detects a dangerous heart rhythm disturbance it can deliver a small electric shock with the aim of restoring a rhythm. Implanting an ICD in someone with short QT syndrome who has not yet experienced a life-threatening arrhythmia is more controversial but may be considered.


Medication

Medication aimed at correcting the ECG abnormality – the shortened
QT interval The QT interval is a measurement made on an electrocardiogram used to assess some of the electrical properties of the heart. It is calculated as the time from the start of the Q wave to the end of the T wave, and approximates to the time taken ...
 – has been tried. Quinidine, a class Ia antiarrhythmic agent, has been shown to partially correct the QT interval and make the heart more resilient to artificially-induced abnormal heart rhythms, although it is still uncertain at present whether this translates to a lower risk of sudden death. Sotalol, another antiarrhythmic, may prolong the QT in some subtypes of short QT syndrome. Other medications including
beta blocker Beta blockers, also spelled β-blockers, are a class of medications that are predominantly used to manage abnormal heart rhythms, and to protect the heart from a second heart attack after a first heart attack ( secondary prevention). They are ...
s, flecainide, and amiodarone have been tried, but at present there is little evidence to support their use. Drugs can also be used to treat the less dangerous abnormal heart rhythm that is also associated with short QT – atrial fibrillation.
Propafenone Propafenone, sold under the brand name Rythmol among others, is a class 1c anti-arrhythmic medication, which is used to treat illnesses associated with rapid heart beat such as atrial and ventricular arrhythmias. Mechanism of action Propafen ...
, a class 1c antiarrhythmic, may be helpful in those with short QT to prevent atrial fibrillation. Those who develop atrial fibrillation may also require medication to decrease blood clotting in order to reduce the risk of
stroke A stroke is a disease, medical condition in which poor cerebral circulation, blood flow to the brain causes cell death. There are two main types of stroke: brain ischemia, ischemic, due to lack of blood flow, and intracranial hemorrhage, hemorr ...
.


Epidemiology

Short QT syndrome is a very rare condition with, as of 2018, fewer than 300 cases described in the medical literature. As a genetic syndrome, those affected are born with the condition. Symptoms can occur in newborns, potentially presenting as
sudden infant death syndrome Sudden infant death syndrome (SIDS) is the sudden unexplained death of a child of less than one year of age. Diagnosis requires that the death remain unexplained even after a thorough autopsy and detailed death scene investigation. SIDS usuall ...
. Males and females are equally likely to be affected, and have a similar risk of sudden cardiac death.


Prognosis

The rarity of short QT syndrome makes calculating prognosis accurately difficult. The risk of sudden cardiac death has been estimated at 0.8% per year, leading to a cumulative risk of sudden cardiac death of 41% by the age of 40. A previous history of cardiac arrest predicts a higher likelihood of further dangerous arrhythmias. Some have suggested that those with the shortest QT intervals may have a higher risk of arrhythmias, but this view has not been supported by all. The findings from invasive electrophysiological studies do not predict an individual with short QT syndrome's risk of cardiac arrest.


History

The first report of short QT syndrome to be published was in 2000, describing a family with short QT intervals on the 12-lead ECG, atrial fibrillation occurring at a young age, and an unrelated patient who had a sudden cardiac death associated with a short QT interval. The association between short QT and sudden cardiac death was described in 2003, and the first gene associated with the condition was identified in 2004. Criteria for diagnosing Short QT syndrome were proposed in 2011. Recently the first animal model of short QT syndrome was presented, enabling more in depth analysis of arrhythmia mechanisms.


See also

* Channelopathy *
Long QT syndrome Long QT syndrome (LQTS) is a condition affecting repolarization (relaxing) of the heart after a heartbeat, giving rise to an abnormally lengthy QT interval. It results in an increased risk of an irregular heartbeat which can result in fainting, ...
*
Brugada syndrome Brugada syndrome (BrS) is a genetic disorder in which the electrical activity of the heart is abnormal due to channelopathy. It increases the risk of abnormal heart rhythms and sudden cardiac death. Those affected may have episodes of synco ...
* Catecholaminergic polymorphic ventricular tachycardia


References


External links

* {{Heart diseases Cardiac arrhythmia Channelopathies Autosomal dominant disorders Syndromes affecting the heart Cardiogenetic disorders Single-nucleotide polymorphism associated disease