HOME

TheInfoList



OR:

In
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the ...
and
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
scalar field dark matter is a classical, minimally coupled, scalar field postulated to account for the inferred
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
.


Background

The universe may be accelerating, fueled perhaps by a cosmological constant or some other field possessing long range ‘repulsive’ effects. A model must predict the correct form for the large scale clustering spectrum,Galaxies are not scattered about the universe in a random way, but rather form an intricate network of filaments, sheets, and clusters. How these large-scale structures formed is at the root of many key questions in cosmology. account for
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spa ...
anisotropies on large and intermediate angular scales, and provide agreement with the luminosity distance relation obtained from observations of high
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in fr ...
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or whe ...
e. The modeled evolution of the universe includes a large amount of unknown matter and energy in order to agree with such observations. This energy density has two components:
cold dark matter In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only ...
and
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the uni ...
. Each contributes to the theory of the origination of galaxies and the expansion of the universe. The universe must have a critical density, a density not explained by
baryonic matter In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classifi ...
(ordinary
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
) alone.


Scalar field

The dark matter can be modeled as a scalar field using two fitted parameters, mass and self-interaction. In this picture the dark matter consists of an ultralight particle with a mass of ~10−22 eV when there is no self-interaction. If there is a self-interaction a wider mass range is allowed. The uncertainty in position of a particle is larger than its
Compton wavelength The Compton wavelength is a quantum mechanical property of a particle. The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It ...
(a particle with mass 10−22 eV has a Compton wavelength of 1.3
light years A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
), and for some reasonable estimates of particle mass and density of dark matter there is no point talking about the individual particles’ positions and momenta. Ultra-light dark matter would be more like a wave than a particle, and the
galactic halo A galactic halo is an extended, roughly spherical component of a galaxy which extends beyond the main, visible component. Several distinct components of galaxies comprise the halo: * the stellar halo * the galactic corona (hot gas, i.e. a plasma) ...
s are giant systems of condensed bose liquid, possibly
superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in tw ...
. The dark matter can be described as a Bose–Einstein condensate of the ultralight quanta of the field and as boson stars. The enormous Compton wavelength of these particles prevents structure formation on small, subgalactic scales, which is a major problem in traditional cold dark matter models. The collapse of initial over-densities is studied in the references. This dark matter model is also known as BEC dark matter or wave dark matter. Fuzzy dark matter and ultra-light axion are examples of scalar field dark matter.


See also

* * * * * * * * *


References


External links


''Scaled-Up Darkness'', Scientific American
{{Dark matter Physical cosmology Astroparticle physics Dark matter Particle physics