HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
graph theory In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices and of , there is an automorphism :f : V(G) \rightarrow V(G) such that :f(u_1) = u_2 and f(v_1) = v_2. In other words, a graph is symmetric if its automorphism group acts
transitively Transitivity or transitive may refer to: Grammar * Transitivity (grammar), a property of verbs that relates to whether a verb can take direct objects * Transitive verb, a verb which takes an object * Transitive case, a grammatical case to mark a ...
on
ordered pair In mathematics, an ordered pair (''a'', ''b'') is a pair of objects. The order in which the objects appear in the pair is significant: the ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a'') unless ''a'' = ''b''. (In co ...
s of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called -transitive or flag-transitive. By definition (ignoring and ), a symmetric graph without isolated vertices must also be
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of fa ...
. Since the definition above maps one edge to another, a symmetric graph must also be edge-transitive. However, an edge-transitive graph need not be symmetric, since might map to , but not to .
Star graphs A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth make ...
are a simple example of being edge-transitive without being vertex-transitive or symmetric. As a further example, semi-symmetric graphs are edge-transitive and
regular The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrum ...
, but not vertex-transitive. Every connected symmetric graph must thus be both vertex-transitive and edge-transitive, and the converse is true for graphs of odd degree. However, for even degree, there exist connected graphs which are vertex-transitive and edge-transitive, but not symmetric. Such graphs are called half-transitive. The smallest connected half-transitive graph is Holt's graph, with degree 4 and 27 vertices. Confusingly, some authors use the term "symmetric graph" to mean a graph which is vertex-transitive and edge-transitive, rather than an arc-transitive graph. Such a definition would include half-transitive graphs, which are excluded under the definition above. A distance-transitive graph is one where instead of considering pairs of adjacent vertices (i.e. vertices a distance of 1 apart), the definition covers two pairs of vertices, each the same distance apart. Such graphs are automatically symmetric, by definition. A is defined to be a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of vertices, such that any two consecutive vertices in the sequence are adjacent, and with any repeated vertices being more than 2 steps apart. A graph is a graph such that the automorphism group acts transitively on , but not on . Since are simply edges, every symmetric graph of degree 3 or more must be for some , and the value of can be used to further classify symmetric graphs. The cube is , for example.


Examples

Two basic families of symmetric graphs for any number of vertices are the cycle graphs (of degree 2) and the
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices ...
s. Further symmetric graphs are formed by the vertices and edges of the regular and quasiregular polyhedra: the
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the on ...
,
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at e ...
,
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetric ...
,
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentag ...
,
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
, and
icosidodecahedron In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 ...
. Extension of the cube to n dimensions gives the hypercube graphs (with 2n vertices and degree n). Similarly extension of the octahedron to n dimensions gives the graphs of the cross-polytopes, this family of graphs (with 2n vertices and degree 2n-2) are sometimes referred to as the
cocktail party graph A cocktail is an alcoholic mixed drink. Most commonly, cocktails are either a combination of spirits, or one or more spirits mixed with other ingredients such as tonic water, fruit juice, flavored syrup, or cream. Cocktails vary widely acro ...
s - they are complete graphs with a set of edges making a perfect matching removed. Additional families of symmetric graphs with an even number of vertices 2n, are the evenly split
complete bipartite graph In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory ...
s Kn,n and the crown graphs on 2n vertices. Many other symmetric graphs can be classified as circulant graphs (but not all). The Rado graph forms an example of a symmetric graph with infinitely many vertices and infinite degree


Cubic Symmetric graphs

Combining the symmetry condition with the restriction that graphs be
cubic Cubic may refer to: Science and mathematics * Cube (algebra), "cubic" measurement * Cube, a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex ** Cubic crystal system, a crystal system w ...
(i.e. all vertices have degree 3) yields quite a strong condition, and such graphs are rare enough to be listed. They all have an even number of vertices. The Foster census and its extensions provide such lists. The Foster census was begun in the 1930s by Ronald M. Foster while he was employed by
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
, and in 1988 (when Foster was 92) the then current Foster census (listing all cubic symmetric graphs up to 512 vertices) was published in book form. The first thirteen items in the list are cubic symmetric graphs with up to 30 verticesBiggs, p. 148Weisstein, Eric W.,
Cubic Symmetric Graph
, from Wolfram MathWorld.
(ten of these are also distance-transitive; the exceptions are as indicated): Other well known cubic symmetric graphs are the Dyck graph, the Foster graph and the Biggs–Smith graph. The ten distance-transitive graphs listed above, together with the Foster graph and the Biggs–Smith graph, are the only cubic distance-transitive graphs.


Properties

The vertex-connectivity of a symmetric graph is always equal to the
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
''d''. In contrast, for
vertex-transitive graph In the mathematical field of graph theory, a vertex-transitive graph is a graph in which, given any two vertices and of , there is some automorphism :f : G \to G\ such that :f(v_1) = v_2.\ In other words, a graph is vertex-transitive ...
s in general, the vertex-connectivity is bounded below by 2(''d'' + 1)/3. A ''t''-transitive graph of degree 3 or more has girth at least 2(''t'' – 1). However, there are no finite ''t''-transitive graphs of degree 3 or more for ''t'' ≥ 8. In the case of the degree being exactly 3 (cubic symmetric graphs), there are none for ''t'' ≥ 6.


See also

* Algebraic graph theory *
Gallery of named graphs Some of the finite structures considered in graph theory have names, sometimes inspired by the graph's topology, and sometimes after their discoverer. A famous example is the Petersen graph, a concrete graph on 10 vertices that appears as a minim ...
* Regular map


References

{{reflist


External links


Cubic symmetric graphs (The Foster Census)
Data files for all cubic symmetric graphs up to 768 vertices, and some cubic graphs with up to 1000 vertices. Gordon Royle, updated February 2001, retrieved 2009-04-18.
Trivalent (cubic) symmetric graphs on up to 10000 vertices
Marston Conder, 2011. Algebraic graph theory Graph families Regular graphs