In
topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
, a branch of
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the suspension of a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
''X'' is intuitively obtained by stretching ''X'' into a
cylinder
A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.
A cylinder may also be defined as an infinite ...
and then collapsing both end faces to points. One views ''X'' as "suspended" between these end points. The suspension of ''X'' is denoted by ''SX'' or susp(''X'').
There is a variant of the suspension for a
pointed space
In mathematics, a pointed space or based space is a topological space with a distinguished point, the basepoint. The distinguished point is just simply one particular point, picked out from the space, and given a name, such as x_0, that remains u ...
, which is called the reduced suspension and denoted by Σ''X''. The "usual" suspension ''SX'' is sometimes called the unreduced suspension, unbased suspension, or free suspension of ''X'', to distinguish it from Σ''X.''
Free suspension
The (free) suspension
of a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
can be defined in several ways.
1.
is the
quotient space In other words, it can be constructed as follows:
* Construct the
cylinder
A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base.
A cylinder may also be defined as an infinite ...