In
probability theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
and
statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, smoothness of a
density function
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
is a measure which determines how many times the density function can be differentiated, or equivalently the limiting behavior of distribution’s
characteristic function In mathematics, the term "characteristic function" can refer to any of several distinct concepts:
* The indicator function of a subset, that is the function
\mathbf_A\colon X \to \,
which for a given subset ''A'' of ''X'', has value 1 at points ...
.
Formally, we call the distribution of a
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
''X'' ordinary smooth of order ''β''
if its
characteristic function In mathematics, the term "characteristic function" can refer to any of several distinct concepts:
* The indicator function of a subset, that is the function
\mathbf_A\colon X \to \,
which for a given subset ''A'' of ''X'', has value 1 at points ...
satisfies
:
for some positive constants ''d''
0, ''d''
1, ''β''. The examples of such distributions are
gamma
Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
,
exponential
Exponential may refer to any of several mathematical topics related to exponentiation, including:
* Exponential function, also:
**Matrix exponential, the matrix analogue to the above
*Exponential decay, decrease at a rate proportional to value
* Ex ...
,
uniform
A uniform is a variety of costume worn by members of an organization while usually participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency serv ...
, etc.
The distribution is called supersmooth of order ''β''
if its characteristic function satisfies
:
for some positive constants ''d''
0, ''d''
1, ''β'', ''γ'' and constants ''β''
0, ''β''
1. Such supersmooth distributions have derivatives of all orders. Examples:
normal,
Cauchy
Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real a ...
, mixture normal.
References
*
Theory of probability distributions
{{probability-stub