HOME

TheInfoList



OR:

In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as \mathbb^n or \mathbb^n) is the set of vectors whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane \mathbb^2 formed by the pairs of
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s, the standard basis is formed by the vectors :\mathbf_x = (1,0),\quad \mathbf_y = (0,1). Similarly, the standard basis for the three-dimensional space \mathbb^3 is formed by vectors :\mathbf_x = (1,0,0),\quad \mathbf_y = (0,1,0),\quad \mathbf_z=(0,0,1). Here the vector e''x'' points in the ''x'' direction, the vector e''y'' points in the ''y'' direction, and the vector e''z'' points in the ''z'' direction. There are several common notations for standard-basis vectors, including , , , and . These vectors are sometimes written with a hat to emphasize their status as unit vectors (standard unit vectors). These vectors are a basis in the sense that any other vector can be expressed uniquely as a linear combination of these. For example, every vector v in three-dimensional space can be written uniquely as :v_x\,\mathbf_x + v_y\,\mathbf_y + v_z\,\mathbf_z, the scalars v_xv_yv_z being the scalar components of the vector v. In the - dimensional Euclidean space \mathbb R^n, the standard basis consists of ''n'' distinct vectors :\, where e''i'' denotes the vector with a 1 in the th
coordinate In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is si ...
and 0's elsewhere. Standard bases can be defined for other
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
s, whose definition involves coefficients, such as
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
s and matrices. In both cases, the standard basis consists of the elements of the space such that all coefficients but one are 0 and the non-zero one is 1. For polynomials, the standard basis thus consists of the
monomial In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer expon ...
s and is commonly called
monomial basis In mathematics the monomial basis of a polynomial ring is its basis (as a vector space or free module over the field or ring of coefficients) that consists of all monomials. The monomials form a basis because every polynomial may be uniquely ...
. For matrices \mathcal_, the standard basis consists of the ''m''×''n''-matrices with exactly one non-zero entry, which is 1. For example, the standard basis for 2×2 matrices is formed by the 4 matrices :\mathbf_ = \begin 1 & 0 \\ 0 & 0 \end,\quad \mathbf_ = \begin 0 & 1 \\ 0 & 0 \end,\quad \mathbf_ = \begin 0 & 0 \\ 1 & 0 \end,\quad \mathbf_ = \begin 0 & 0 \\ 0 & 1 \end.


Properties

By definition, the standard basis is a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of
orthogonal In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
unit vectors. In other words, it is an ordered and orthonormal basis. However, an ordered orthonormal basis is not necessarily a standard basis. For instance the two vectors representing a 30° rotation of the 2D standard basis described above, i.e. :v_1 = \left( , \right) \, :v_2 = \left( , \right) \, are also orthogonal unit vectors, but they are not aligned with the axes of the
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured ...
, so the basis with these vectors does not meet the definition of standard basis.


Generalizations

There is a ''standard'' basis also for the ring of
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
s in ''n'' indeterminates over a field, namely the
monomial In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer expon ...
s. All of the preceding are special cases of the family :_= ( (\delta_ )_ )_ where I is any set and \delta_ is the Kronecker delta, equal to zero whenever and equal to 1 if . This family is the ''canonical'' basis of the ''R''-module ( free module) :R^ of all families :f=(f_i) from ''I'' into a ring ''R'', which are zero except for a finite number of indices, if we interpret 1 as 1''R'', the unit in ''R''.


Other usages

The existence of other 'standard' bases has become a topic of interest in algebraic geometry, beginning with work of Hodge from 1943 on Grassmannians. It is now a part of representation theory called ''standard monomial theory''. The idea of standard basis in the universal enveloping algebra of a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
is established by the Poincaré–Birkhoff–Witt theorem. Gröbner bases are also sometimes called standard bases. In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which rel ...
, the standard basis vectors for a given Euclidean space are sometimes referred to as the versors of the axes of the corresponding Cartesian coordinate system.


See also

* Canonical units *


References

* (page 198) *{{cite book , last = Schneider , first = Philip J. , author2=Eberly, David H. , title = Geometric tools for computer graphics , publisher = Amsterdam; Boston: Morgan Kaufmann Publishers , date = 2003 , pages = , isbn = 1-55860-594-0 (page 112) Linear algebra