In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the name symplectic group can refer to two different, but closely related, collections of mathematical
groups, denoted and for positive integer ''n'' and
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
F (usually C or R). The latter is called the compact symplectic group and is also denoted by
. Many authors prefer slightly different notations, usually differing by factors of . The notation used here is consistent with the size of the most common
matrices
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the ...
which represent the groups. In
Cartan's classification of the
simple Lie algebra
In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan.
A direct sum of ...
s, the Lie algebra of the complex group is denoted , and is the
compact real form of . Note that when we refer to ''the'' (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension .
The name "
symplectic group" was coined by
Hermann Weyl
Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
as a replacement for the previous confusing names (line) complex group and Abelian linear group, and is the Greek analog of "complex".
The
metaplectic group
In mathematics, the metaplectic group Mp2''n'' is a double cover of the symplectic group Sp2''n''. It can be defined over either real or ''p''-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, ...
is a double cover of the symplectic group over R; it has analogues over other
local field
In mathematics, a field ''K'' is called a non-Archimedean local field if it is complete with respect to a metric induced by a discrete valuation ''v'' and if its residue field ''k'' is finite. In general, a local field is a locally compact t ...
s,
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
s, and
adele ring
In mathematics, the adele ring of a global field (also adelic ring, ring of adeles or ring of adèles) is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the glob ...
s.
The symplectic group is a
classical group
In mathematics, the classical groups are defined as the special linear groups over the reals \mathbb, the complex numbers \mathbb and the quaternions \mathbb together with special automorphism groups of Bilinear form#Symmetric, skew-symmetric an ...
defined as the set of
linear transformations
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
of a -dimensional
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
over the field which preserve a
non-degenerate
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'') given by is not an isomorphism. An equivalent definition when ' ...
skew-symmetric bilinear form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called '' scalars''). In other words, a bilinear form is a function that is linea ...
. Such a vector space is called a
symplectic vector space
In mathematics, a symplectic vector space is a vector space V over a Field (mathematics), field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form.
A symplectic bilinear form is a map (mathematics), mapping \omega : ...
, and the symplectic group of an abstract symplectic vector space is denoted . Upon fixing a basis for , the symplectic group becomes the group of
symplectic matrices, with entries in , under the operation of
matrix multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
. This group is denoted either or . If the bilinear form is represented by the
nonsingular skew-symmetric matrix
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition
In terms of the entries of the matrix, if a ...
Ω, then
:
where ''M''
T is the
transpose
In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal;
that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
of ''M''. Often Ω is defined to be
:
where ''I
n'' is the identity matrix. In this case, can be expressed as those block matrices
, where
, satisfying the three equations:
:
Since all symplectic matrices have
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
, the symplectic group is a
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
of the
special linear group
In mathematics, the special linear group \operatorname(n,R) of degree n over a commutative ring R is the set of n\times n Matrix (mathematics), matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix ...
. When , the symplectic condition on a matrix is satisfied
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the determinant is one, so that . For , there are additional conditions, i.e. is then a proper subgroup of .
Typically, the field is the field of
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s or
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s . In these cases is a real or complex
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
of real or complex dimension , respectively. These groups are
connected
Connected may refer to:
Film and television
* ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular''
* '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film
* ''Connected'' (2015 TV ...
but
non-compact.
The
center of consists of the matrices and as long as the
characteristic of the field is not . Since the center of is discrete and its quotient modulo the center is a
simple group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service.
The d ...
, is considered a
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...
.
The real rank of the corresponding Lie algebra, and hence of the Lie group , is .
The
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
of is the set
:
equipped with the
commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
as its Lie bracket. For the standard skew-symmetric bilinear form
, this Lie algebra is the set of all block matrices
subject to the conditions
:
The symplectic group over the field of complex numbers is a
non-compact,
simply connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
,
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...
. The definition of this group includes no conjugates (contrary to what one might naively expect) but instead it is exactly the same as the definition bar the field change.
is the
complexification
In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include ...
of the real group . is a real,
non-compact,
connected
Connected may refer to:
Film and television
* ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular''
* '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film
* ''Connected'' (2015 TV ...
,
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...
. It has a
fundamental group
In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to the group of
integers
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
under addition. As the
real form
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is the complexification of ''g''0:
: \mathfra ...
of a
simple Lie group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...
its Lie algebra is a
splittable Lie algebra.
Some further properties of :
* The
exponential map from the
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
to the group is not
surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a f ...
. However, any element of the group can be represented as the product of two exponentials. In other words,
::
* For all in :
::
:The matrix is
positive-definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular:
* Positive-definite bilinear form
* Positive-definite ...
and
diagonal
In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek � ...
. The set of such s forms a non-compact subgroup of whereas forms a compact subgroup. This decomposition is known as 'Euler' or 'Bloch–Messiah' decomposition. Further
symplectic matrix
In mathematics, a symplectic matrix is a 2n\times 2n matrix M with real entries that satisfies the condition
where M^\text denotes the transpose of M and \Omega is a fixed 2n\times 2n nonsingular, skew-symmetric matrix. This definition can be ...
properties can be found on that Wikipedia page.
* As a
Lie group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
A manifold is a space that locally resembles Eucli ...
, has a manifold structure. The
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
for is
diffeomorphic
In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.
Defini ...
to the
Cartesian product
In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is
A\times B = \.
A table c ...
of the
unitary group
Unitary may refer to:
Mathematics
* Unitary divisor
* Unitary element
* Unitary group
* Unitary matrix
* Unitary morphism
* Unitary operator
* Unitary transformation
* Unitary representation
* Unitarity (physics)
* ''E''-unitary inverse semi ...
with a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
of dimension .
Infinitesimal generators
The members of the symplectic Lie algebra are the
Hamiltonian matrices.
These are matrices,
such that
where and are
symmetric matrices
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with re ...
. See
classical group
In mathematics, the classical groups are defined as the special linear groups over the reals \mathbb, the complex numbers \mathbb and the quaternions \mathbb together with special automorphism groups of Bilinear form#Symmetric, skew-symmetric an ...
for a derivation.
Example of symplectic matrices
For , the group of matrices with determinant , the three symplectic -matrices are:
Sp(2n, R)
It turns out that
can have a fairly explicit description using generators. If we let
denote the symmetric
matrices, then
is generated by
where
are subgroups of
pg 173pg 2.
Relationship with symplectic geometry
Symplectic geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...
is the study of
symplectic manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sy ...
s. The
tangent space
In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ...
at any point on a symplectic manifold is a
symplectic vector space
In mathematics, a symplectic vector space is a vector space V over a Field (mathematics), field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form.
A symplectic bilinear form is a map (mathematics), mapping \omega : ...
. As noted earlier, structure preserving transformations of a symplectic vector space form a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
and this group is , depending on the dimension of the space and the
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
over which it is defined.
A symplectic vector space is itself a symplectic manifold. A transformation under an
action
Action may refer to:
* Action (philosophy), something which is done by a person
* Action principles the heart of fundamental physics
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video gam ...
of the symplectic group is thus, in a sense, a linearised version of a
symplectomorphism
In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the ...
which is a more general structure preserving transformation on a symplectic manifold.
The compact symplectic group is the intersection of with the unitary group:
:
It is sometimes written as . Alternatively, can be described as the subgroup of (invertible
quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
ic matrices) that preserves the standard
hermitian form
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear map, linear in each of its arguments, but a sesquilinear f ...
on :
:
That is, is just the
quaternionic unitary group, . Indeed, it is sometimes called the hyperunitary group. Also Sp(1) is the group of quaternions of norm , equivalent to and topologically a
-sphere .
Note that is ''not'' a symplectic group in the sense of the previous section—it does not preserve a non-degenerate skew-symmetric -bilinear form on : there is no such form except the zero form. Rather, it is isomorphic to a subgroup of , and so does preserve a complex
symplectic form in a vector space of twice the dimension. As explained below, the Lie algebra of is the compact
real form
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is the complexification of ''g''0:
: \mathfra ...
of the complex symplectic Lie algebra .
is a real Lie group with (real) dimension . It is
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact, a type of agreement used by U.S. states
* Blood compact, an ancient ritual of the Philippines
* Compact government, a t ...
and
simply connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving ...
.
The Lie algebra of is given by the quaternionic
skew-Hermitian
__NOTOC__
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix A is skew-Hermitian if it satisfies the relati ...
matrices, the set of quaternionic matrices that satisfy
:
where is the
conjugate transpose
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate ...
of (here one takes the quaternionic conjugate). The Lie bracket is given by the commutator.
Important subgroups
Some main subgroups are:
:
:
:
Conversely it is itself a subgroup of some other groups:
:
:
:
There are also the
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
s of the
Lie algebras
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identi ...
and .
Relationship between the symplectic groups
Every complex,
semisimple Lie algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of Simple Lie algebra, simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals ...
has a
split real form and a
compact real form; the former is called a
complexification
In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include ...
of the latter two.
The Lie algebra of is
semisimple
In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of ''sim ...
and is denoted . Its
split real form is and its
compact real form is . These correspond to the Lie groups and respectively.
The algebras, , which are the Lie algebras of , are the
indefinite signature equivalent to the compact form.
Physical significance
Classical mechanics
The non-compact symplectic group comes up in classical physics as the symmetries of canonical coordinates preserving the Poisson bracket.
Consider a system of particles, evolving under
Hamilton's equations
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (gene ...
whose position in
phase space
The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
at a given time is denoted by the vector of
canonical coordinates
In mathematics and classical mechanics, canonical coordinates are sets of coordinates on phase space which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the Hamiltonian formulation of cla ...
,
:
The elements of the group are, in a certain sense,
canonical transformations on this vector, i.e. they preserve the form of
Hamilton's equations
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (gene ...
.
If
:
are new canonical coordinates, then, with a dot denoting time derivative,
:
where
:
for all and all in phase space.
For the special case of a
Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
, Hamilton's equations describe the
geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s on that manifold. The coordinates
live on the underlying manifold, and the momenta
live in the
cotangent bundle
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This m ...
. This is the reason why these are conventionally written with upper and lower indexes; it is to distinguish their locations. The corresponding Hamiltonian consists purely of the kinetic energy: it is
where
is the inverse of the
metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
on the Riemannian manifold.
[ Ralph Abraham and Jerrold E. Marsden, ''Foundations of Mechanics'', (1978) Benjamin-Cummings, London ] In fact, the cotangent bundle of ''any'' smooth manifold can be a given a
symplectic structure
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...
in a canonical way, with the symplectic form defined as the
exterior derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The re ...
of the
tautological one-form
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle T^Q of a manifold Q. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus pro ...
.
Quantum mechanics
Consider a system of particles whose
quantum state
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system ...
encodes its position and momentum. These coordinates are continuous variables and hence the
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
, in which the state lives, is infinite-dimensional. This often makes the analysis of this situation tricky. An alternative approach is to consider the evolution of the position and momentum operators under the
Heisenberg equation in
phase space
The phase space of a physical system is the set of all possible physical states of the system when described by a given parameterization. Each possible state corresponds uniquely to a point in the phase space. For mechanical systems, the p ...
.
Construct a vector of
canonical coordinates
In mathematics and classical mechanics, canonical coordinates are sets of coordinates on phase space which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the Hamiltonian formulation of cla ...
,
:
The
canonical commutation relation
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,
hat x,\hat p ...
can be expressed simply as
:
where
:
and is the identity matrix.
Many physical situations only require quadratic
Hamiltonians, i.e.
Hamiltonians of the form
:
where is a real,
symmetric matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with ...
. This turns out to be a useful restriction and allows us to rewrite the
Heisenberg equation as
:
The solution to this equation must preserve the
canonical commutation relation
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,
hat x,\hat p ...
. It can be shown that the time evolution of this system is equivalent to an
action
Action may refer to:
* Action (philosophy), something which is done by a person
* Action principles the heart of fundamental physics
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video gam ...
of
the real symplectic group, , on the phase space.
See also
*
Hamiltonian mechanics
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (gener ...
*
Metaplectic group
In mathematics, the metaplectic group Mp2''n'' is a double cover of the symplectic group Sp2''n''. It can be defined over either real or ''p''-adic numbers. The construction covers more generally the case of an arbitrary local or finite field, ...
*
Orthogonal group
In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
*
Paramodular group
*
Projective unitary group
*
Representations of classical Lie groups
In mathematics, the finite-dimensional representations of the complex classical Lie groups
GL(n,\mathbb), SL(n,\mathbb), O(n,\mathbb), SO(n,\mathbb), Sp(2n,\mathbb),
can be constructed using the general representation theory of semisimple Lie ...
*
Symplectic manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sy ...
,
Symplectic matrix
In mathematics, a symplectic matrix is a 2n\times 2n matrix M with real entries that satisfies the condition
where M^\text denotes the transpose of M and \Omega is a fixed 2n\times 2n nonsingular, skew-symmetric matrix. This definition can be ...
,
Symplectic vector space
In mathematics, a symplectic vector space is a vector space V over a Field (mathematics), field F (for example the real numbers \mathbb) equipped with a symplectic bilinear form.
A symplectic bilinear form is a map (mathematics), mapping \omega : ...
,
Symplectic representation
In mathematical field of representation theory, a symplectic representation is a representation of a group or a Lie algebra on a symplectic vector space (''V'', ''ω'') which preserves the symplectic form ''ω''. Here ''ω'' is a nondegenerate ske ...
*
Unitary group
Unitary may refer to:
Mathematics
* Unitary divisor
* Unitary element
* Unitary group
* Unitary matrix
* Unitary morphism
* Unitary operator
* Unitary transformation
* Unitary representation
* Unitarity (physics)
* ''E''-unitary inverse semi ...
*
Θ10
In representation theory, a branch of mathematics, θ10 is a cuspidal unipotent complex irreducible representation of the symplectic group Sp4 over a finite, local, or global field.
introduced θ10 for the symplectic group Sp4(F''q'') over a fi ...
Notes
References
*
*
*.
*
*
*
*.
{{Authority control
Lie groups
Symplectic geometry