HOME

TheInfoList



OR:

In
computational complexity theory In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and explores the relationships between these classifications. A computational problem ...
, an interactive proof system is an
abstract machine In computer science, an abstract machine is a theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is similar to a mathematical function in that it receives inputs and produces outputs based on p ...
that models
computation A computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computation are mathematical equation solving and the execution of computer algorithms. Mechanical or electronic devices (or, hist ...
as the exchange of messages between two parties: a ''prover'' and a ''verifier''. The parties interact by exchanging messages in order to ascertain whether a given
string String or strings may refer to: *String (structure), a long flexible structure made from threads twisted together, which is used to tie, bind, or hang other objects Arts, entertainment, and media Films * ''Strings'' (1991 film), a Canadian anim ...
belongs to a
language Language is a structured system of communication that consists of grammar and vocabulary. It is the primary means by which humans convey meaning, both in spoken and signed language, signed forms, and may also be conveyed through writing syste ...
or not. The prover is assumed to possess unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be always honest. Messages are sent between the verifier and prover until the verifier has an answer to the problem and has "convinced" itself that it is correct. All interactive proof systems have two requirements: * Completeness: if the statement is true, the honest prover (that is, one following the protocol properly) can convince the honest verifier that it is indeed true. * Soundness: if the statement is false, no prover, even if it doesn't follow the protocol, can convince the honest verifier that it is true, except with some small
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
. The specific nature of the system, and so the
complexity class In computational complexity theory, a complexity class is a set (mathematics), set of computational problems "of related resource-based computational complexity, complexity". The two most commonly analyzed resources are time complexity, time and s ...
of languages it can recognize, depends on what sort of bounds are put on the verifier, as well as what abilities it is given—for example, most interactive proof systems depend critically on the verifier's ability to make random choices. It also depends on the nature of the messages exchanged—how many and what they can contain. Interactive proof systems have been found to have some important implications for traditional complexity classes defined using only one machine. The main complexity classes describing interactive proof systems are AM and IP.


Background

Every interactive proof system defines a
formal language In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also c ...
of strings L. Soundness of the proof system refers to the property that no prover can make the verifier accept for the wrong statement y \not\in L except with some small probability. The upper bound of this probability is referred to as the soundness error of a proof system. More formally, for every prover (\tilde), and every y \not\in L: : \Pr \perp,(\text))\gets (\tilde)(y) \leftrightarrow (\mathcal)(y)< \epsilon. for some \epsilon \ll 1 . As long as the soundness error is bounded by a polynomial fraction of the potential running time of the verifier (i.e. \epsilon\leq1/\mathrm(, y, )), it is always possible to amplify soundness until the soundness error becomes
negligible function In mathematics, a negligible function is a function \mu:\mathbb\to\mathbb such that for every positive integer ''c'' there exists an integer ''N'c'' such that for all ''x'' > ''N'c'', :, \mu(x),  0 such that for all ''x''&n ...
relative to the running time of the verifier. This is achieved by repeating the proof and accepting only if all proofs verify. After \ell repetitions, a soundness error \epsilon will be reduced to \epsilon^\ell.


Classes of interactive proofs


NP

The complexity class NP may be viewed as a very simple proof system. In this system, the verifier is a deterministic, polynomial-time machine (a P machine). The protocol is: * The prover looks at the input and computes the solution using its unlimited power and returns a polynomial-size proof certificate. * The verifier verifies that the certificate is valid in deterministic polynomial time. If it is valid, it accepts; otherwise, it rejects. In the case where a valid proof certificate exists, the prover is always able to make the verifier accept by giving it that certificate. In the case where there is no valid proof certificate, however, the input is not in the language, and no prover, however malicious it is, can convince the verifier otherwise, because any proof certificate will be rejected.


Arthur–Merlin and Merlin–Arthur protocols

Although NP may be viewed as using interaction, it wasn't until 1985 that the concept of computation through interaction was conceived (in the context of complexity theory) by two independent groups of researchers. One approach, by
László Babai László "Laci" Babai (born July 20, 1950, in Budapest) a fellow of the American Academy of Arts and Sciences, and won the Knuth Prize. Babai was an invited speaker at the International Congresses of Mathematicians in Kyoto (1990), Zürich (199 ...
, who published "Trading group theory for randomness", defined the ''Arthur–Merlin'' (AM) class hierarchy. In this presentation, Arthur (the verifier) is a
probabilistic Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
, polynomial-time machine, while Merlin (the prover) has unbounded resources. The class MA in particular is a simple generalization of the NP interaction above in which the verifier is probabilistic instead of deterministic. Also, instead of requiring that the verifier always accept valid certificates and reject invalid certificates, it is more lenient: * Completeness: if the string is in the language, the prover must be able to give a certificate such that the verifier will accept with probability at least 2/3 (depending on the verifier's random choices). * Soundness: if the string is not in the language, no prover, however malicious, will be able to convince the verifier to accept the string with probability exceeding 1/3. This machine is potentially more powerful than an ordinary NP interaction protocol, and the certificates are no less practical to verify, since BPP algorithms are considered as abstracting practical computation (see BPP).


Public coin protocol versus private coin protocol

In a ''public coin'' protocol, the random choices made by the verifier are made public. They remain private in a private coin protocol. In the same conference where Babai defined his proof system for MA,
Shafi Goldwasser Shafrira Goldwasser (; born 1959) is an Israeli-American computer scientist. A winner of the Turing Award in 2012, she is the RSA Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology; a professor o ...
,
Silvio Micali Silvio Micali (born October 13, 1954) is an Italian computer scientist, professor at the Massachusetts Institute of Technology and the founder of Algorand, a proof-of-stake blockchain cryptocurrency protocol. Micali's research at the MIT Compu ...
and
Charles Rackoff Charles Weill Rackoff is an American cryptologist. Born and raised in New York City, he attended MIT as both an undergraduate and graduate student, and earned a Ph.D. degree in Computer Science in 1974. He spent a year as a postdoctoral scholar ...
published a paper defining the interactive proof system IP 'f''(''n'') This has the same machines as the MA protocol, except that ''f''(''n'') ''rounds'' are allowed for an input of size ''n''. In each round, the verifier performs computation and passes a message to the prover, and the prover performs computation and passes information back to the verifier. At the end the verifier must make its decision. For example, in an IP protocol, the sequence would be VPVPVPV, where V is a verifier turn and P is a prover turn. In Arthur–Merlin protocols, Babai defined a similar class AM 'f''(''n'')which allowed ''f''(''n'') rounds, but he put one extra condition on the machine: the verifier must show the prover all the random bits it uses in its computation. The result is that the verifier cannot "hide" anything from the prover, because the prover is powerful enough to simulate everything the verifier does if it knows what random bits it used. This is called a ''public coin'' protocol, because the random bits ("coin flips") are visible to both machines. The IP approach is called a ''private coin'' protocol by contrast. The essential problem with public coins is that if the prover wishes to maliciously convince the verifier to accept a string which is not in the language, it seems like the verifier might be able to thwart its plans if it can hide its internal state from it. This was a primary motivation in defining the IP proof systems. In 1986, Goldwasser and Sipser showed, perhaps surprisingly, that the verifier's ability to hide coin flips from the prover does it little good after all, in that an Arthur–Merlin public coin protocol with only two more rounds can recognize all the same languages. The result is that public-coin and private-coin protocols are roughly equivalent. In fact, as Babai shows in 1988, AM 'k''AM for all constant ''k'', so the IP 'k''have no advantage over AM. To demonstrate the power of these classes, consider the
graph isomorphism problem The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. The problem is not known to be solvable in polynomial time nor to be NP-complete, and therefore may be in the computational c ...
, the problem of determining whether it is possible to permute the vertices of one graph so that it is identical to another graph. This problem is in NP, since the proof certificate is the permutation which makes the graphs equal. It turns out that the complement of the graph isomorphism problem, a co-NP problem not known to be in NP, has an AM algorithm and the best way to see it is via a private coins algorithm.O. Goldreich, S. Micali, A. Wigderson
Proofs that yield nothing but their validity
''Journal of the ACM'', volume 38, issue 3, p.690–728. July 1991.


IP

Private coins may not be helpful, but more rounds of interaction are helpful. If we allow the probabilistic verifier machine and the all-powerful prover to interact for a polynomial number of rounds, we get the class of problems called IP. In 1992,
Adi Shamir Adi Shamir (; born July 6, 1952) is an Israeli cryptographer and inventor. He is a co-inventor of the Rivest–Shamir–Adleman (RSA) algorithm (along with Ron Rivest and Len Adleman), a co-inventor of the Feige–Fiat–Shamir identification sc ...
revealed in one of the central results of complexity theory that IP equals
PSPACE In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space. Formal definition If we denote by SPACE(''f''(''n'')), the set of all problems that can ...
, the class of problems solvable by an ordinary
deterministic Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algor ...
in polynomial space.


QIP

If we allow the elements of the system to use
quantum computation A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of both particles and waves, and quantum computing takes advantage of this behavior using specialized hardware. C ...
, the system is called a quantum interactive proof system, and the corresponding complexity class is called QIP. A series of results culminated in a 2010 breakthrough that QIP = PSPACE.


Zero knowledge

Not only can interactive proof systems solve problems not believed to be in NP, but under assumptions about the existence of
one-way function In computer science, a one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input. Here, "easy" and "hard" are to be understood in the sense of computational complexity theory, s ...
s, a prover can convince the verifier of the solution without ever giving the verifier information about the solution. This is important when the verifier cannot be trusted with the full solution. At first it seems impossible that the verifier could be convinced that there is a solution when the verifier has not seen a certificate, but such proofs, known as
zero-knowledge proof In cryptography, a zero-knowledge proof (also known as a ZK proof or ZKP) is a protocol in which one party (the prover) can convince another party (the verifier) that some given statement is true, without conveying to the verifier any information ...
s are in fact believed to exist for all problems in NP and are valuable in
cryptography Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
. Zero-knowledge proofs were first mentioned in the original 1985 paper on IP by Goldwasser, Micali and Rackoff for specific number theoretic languages. The extent of their power was however shown by
Oded Goldreich Oded Goldreich (; born 1957) is a professor of computer science at the faculty of mathematics and computer science of the Weizmann Institute of Science, Israel. His research interests lie within the theory of computation and are, specifically, ...
,
Silvio Micali Silvio Micali (born October 13, 1954) is an Italian computer scientist, professor at the Massachusetts Institute of Technology and the founder of Algorand, a proof-of-stake blockchain cryptocurrency protocol. Micali's research at the MIT Compu ...
and
Avi Wigderson Avi Wigderson (; born 9 September 1956) is an Israeli computer scientist and mathematician. He is the Herbert H. Maass Professor in the school of mathematics at the Institute for Advanced Study in Princeton, New Jersey, United States of America ...
. for all of NP, and this was first extended by Russell Impagliazzo and
Moti Yung Mordechai M. "Moti" Yung is a cryptographer and computer scientist known for his work on cryptovirology and kleptography. Career Yung earned his PhD from Columbia University in 1988 under the supervision of Zvi Galil. In the past, he worked a ...
to all IP.


MIP

One goal of IP's designers was to create the most powerful possible interactive proof system, and at first it seems like it cannot be made more powerful without making the verifier more powerful and so impractical. Goldwasser et al. overcame this in their 1988 "Multi prover interactive proofs: How to remove intractability assumptions", which defines a variant of IP called MIP in which there are ''two'' independent provers.M. Ben-or, Shafi Goldwasser, J. Kilian, and A. Wigderson
Multi prover interactive proofs: How to remove intractability assumptions
''Proceedings of the 20th ACM Symposium on Theory of Computing'', pp. 113–121. 1988.
The two provers cannot communicate once the verifier has begun sending messages to them. Just as it's easier to tell if a criminal is lying if he and his partner are interrogated in separate rooms, it's considerably easier to detect a malicious prover trying to trick the verifier into accepting a string not in the language if there is another prover it can double-check with. In fact, this is so helpful that Babai, Fortnow, and Lund were able to show that MIP =
NEXPTIME In computational complexity theory, the complexity class NEXPTIME (sometimes called NEXP) is the set of decision problems that can be solved by a non-deterministic Turing machine using time 2^. In terms of NTIME, :\mathsf = \bigcup_ \mathsf(2^) ...
, the class of all problems solvable by a nondeterministic machine in ''exponential time'', a very large class. NEXPTIME contains PSPACE, and is believed to strictly contain PSPACE. Adding a constant number of additional provers beyond two does not enable recognition of any more languages. This result paved the way for the celebrated
PCP theorem In computational complexity theory, the PCP theorem (also known as the PCP characterization theorem) states that every decision problem in the NP complexity class has probabilistically checkable proofs ( proofs that can be checked by a randomiz ...
, which can be considered to be a "scaled-down" version of this theorem. MIP also has the helpful property that zero-knowledge proofs for every language in NP can be described without the assumption of one-way functions that IP must make. This has bearing on the design of provably unbreakable cryptographic algorithms. Moreover, a MIP protocol can recognize all languages in IP in only a constant number of rounds, and if a third prover is added, it can recognize all languages in NEXPTIME in a constant number of rounds, showing again its power over IP. It is known that for any constant ''k'', a MIP system with ''k'' provers and polynomially many rounds can be turned into an equivalent system with only 2 provers, and a constant number of rounds.


PCP

While the designers of IP considered generalizations of Babai's interactive proof systems, others considered restrictions. A very useful interactive proof system is PCP(''f''(''n''), ''g''(''n'')), which is a restriction of MA where Arthur can only use ''f''(''n'') random bits and can only examine ''g''(''n'') bits of the proof certificate sent by Merlin (essentially using
random access Random access (also called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any other, no matter how many elemen ...
). There are a number of easy-to-prove results about various PCP classes. , the class of polynomial-time machines with no randomness but access to a certificate, is just NP. , the class of polynomial-time machines with access to polynomially many random bits is co- RP. Arora and Safra's first major result was that ; put another way, if the verifier in the NP protocol is constrained to choose only bits of the proof certificate to look at, this won't make any difference as long as it has random bits to use. Furthermore, the
PCP theorem In computational complexity theory, the PCP theorem (also known as the PCP characterization theorem) states that every decision problem in the NP complexity class has probabilistically checkable proofs ( proofs that can be checked by a randomiz ...
asserts that the number of proof accesses can be brought all the way down to a constant. That is, .Sanjeev Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy
Proof Verification and the Hardness of Approximation Problems
Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science, pp. 13–22. 1992.
They used this valuable characterization of NP to prove that
approximation algorithm In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned sol ...
s do not exist for the optimization versions of certain
NP-complete In computational complexity theory, NP-complete problems are the hardest of the problems to which ''solutions'' can be verified ''quickly''. Somewhat more precisely, a problem is NP-complete when: # It is a decision problem, meaning that for any ...
problems unless
P = NP The P versus NP problem is a major unsolved problem in theoretical computer science. Informally, it asks whether every problem whose solution can be quickly verified can also be quickly solved. Here, "quickly" means an algorithm exists that ...
. Such problems are now studied in the field known as hardness of approximation.


See also

*
Oracle machine In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a black box, called an oracle, which is able to solve certain problems in a single operation. The ...
* Proof of knowledge


References


Textbooks

* Arora, Sanjeev; Barak, Boaz
"Complexity Theory: A Modern Approach"
Cambridge University Press, March 2009. * Section 10.4: Interactive Proof Systems, pp. 354–366. * Section 19.2: Games against nature and interactive protocols, pp. 469–480.


External links

* Dexter Kozen
Interactive Proofs
CS682 Spring 2004 lecture notes. Department of Computer Science, Cornell University. * Complexity Zoo: *
MAMA'MAEXPMAE
*
AMAMEXPAM intersect co-AMAM[polylog
/nowiki>">olylog">AM[polylog
/nowiki>br>coAMBP•NP
*
QMAQMA+QMA(2)QMAlogQMAM
*
IPMIPIPPQIPQIP(2)compIPfrIP
*
PCP(r(n),q(n))
* Larry Gonick.
Proof Positive?
. A comic strip about interactive proof systems. {{DEFAULTSORT:Interactive Proof System Computational complexity theory