Solid-state chemistry, also sometimes referred as materials chemistry, is the study of the
synthesis
Synthesis or synthesize may refer to:
Science Chemistry and biochemistry
*Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors
**Organic synthesis, the chemical synthesis of organi ...
, structure, and properties of solid phase materials. It therefore has a strong overlap with
solid-state physics
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ...
,
mineralogy
Mineralogy is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical mineralogy, optical) properties of minerals and mineralized artifact (archaeology), artifacts. Specific s ...
,
crystallography
Crystallography is the branch of science devoted to the study of molecular and crystalline structure and properties. The word ''crystallography'' is derived from the Ancient Greek word (; "clear ice, rock-crystal"), and (; "to write"). In J ...
,
ceramic
A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
s,
metallurgy
Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys.
Metallurgy encompasses both the ...
,
thermodynamics
Thermodynamics is a branch of physics that deals with heat, Work (thermodynamics), work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed b ...
,
materials science
Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries.
The intellectual origins of materials sci ...
and
electronics
Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
with a focus on the synthesis of novel materials and their characterization. A diverse range of synthetic techniques, such as the ceramic method and
chemical vapour depostion, make solid-state materials. Solids can be classified as crystalline or amorphous on basis of the nature of order present in the arrangement of their constituent particles.
Their elemental compositions, microstructures, and physical properties can be characterized through a variety of analytical methods.
History

Because of its direct relevance to products of commerce, solid state inorganic chemistry has been strongly driven by technology. Progress in the field has often been fueled by the demands of industry, sometimes in collaboration with academia. Applications discovered in the 20th century include
zeolite
Zeolites are a group of several microporous, crystalline aluminosilicate minerals commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a meta ...
and
platinum
Platinum is a chemical element; it has Symbol (chemistry), symbol Pt and atomic number 78. It is a density, dense, malleable, ductility, ductile, highly unreactive, precious metal, precious, silverish-white transition metal. Its name origina ...
-based catalysts for petroleum processing in the 1950s, high-purity silicon as a core component of microelectronic devices in the 1960s, and “high temperature” superconductivity in the 1980s. The invention of
X-ray crystallography
X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
in the early 1900s by
William Lawrence Bragg
Sir William Lawrence Bragg (31 March 1890 – 1 July 1971) was an Australian-born British physicist who shared the 1915 Nobel Prize in Physics with his father William Henry Bragg "for their services in the analysis of crystal structure by ...
was an enabling innovation. Our understanding of how reactions proceed at the atomic level in the solid state was advanced considerably by
Carl Wagner's work on oxidation rate theory, counter diffusion of ions, and defect chemistry. Because of his contributions, he has sometimes been referred to as the ''father of solid state chemistry''.
Synthetic methods
Given the diversity of solid-state compounds, an equally diverse array of methods are used for their preparation.
[ Synthesis can range from high-temperature methods, like the ceramic method, to gas methods, like ]chemical vapour deposition
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.
In typical CVD, the wafer (subst ...
. Often, the methods prevent defect formation or produce high-purity products.
High-temperature methods
Ceramic method
The ceramic method is one of the most common synthesis techniques. The synthesis occurs entirely in the solid state. The reactants are ground together, formed into a pellet using a pellet press and hydraulic press, and heated at high temperatures. When the temperature of the reactants are sufficient, the ions at the grain boundaries react to form desired phases. Generally ceramic methods give polycrystalline powders, but not single crystals.
Using a mortar and pestle
A mortar and pestle is a set of two simple tools used to prepare ingredients or substances by compression (physics), crushing and shear force, grinding them into a fine Paste (rheology), paste or powder in the kitchen, laboratory, and pharmacy. ...
, ResonantAcoustic mixer, or ball mill, the reactants are ground together, which decreases size and increases surface area
The surface area (symbol ''A'') of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the d ...
of the reactants. If the mixing is not sufficient, we can use techniques such as co-precipitation and sol-gel. A chemist forms pellets from the ground reactants and places the pellets into containers for heating. The choice of container depends on the precursors, the reaction temperature and the expected product. For example, metal oxides are typically synthesized in silica or alumina containers. A tube furnace heats the pellet. Tube furnaces are available up to maximum temperatures of 2800oC.
Molten flux synthesis
Molten flux synthesis can be an efficient method for obtaining single crystals. In this method, the starting reagents are combined with flux, an inert material with a melting point lower than that of the starting materials. The flux serves as a solvent. After the reaction, the excess flux can be washed away using an appropriate solvent or it can be heat again to remove the flux by sublimation if it is a volatile compound.
Crucible materials have a great role to play in molten flux synthesis. The crucible should not react with the flux or the starting reagent. If any of the material is volatile, it is recommended to conduct the reaction in a sealed ampule. If the target phase is sensitive to oxygen, a carbon- coated fused silica tube or a carbon crucible inside a fused silica tube is often used which prevents the direct contact between the tube wall and reagents.
Chemical vapour transport
Chemical vapour transport results in very pure materials. The reaction typically occurs in a sealed ampoule. A transporting agent, added to the sealed ampoule, produces a volatile intermediate species from the solid reactant. For metal oxides, the transporting agent is usually Cl2 or HCl. The ampoule has a temperature gradient, and, as the gaseous reactant travels along the gradient, it eventually deposits as a crystal. An example of an industrially-used chemical vapor transport reaction is the Mond process. The Mond process involves heating impure nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
in a stream of carbon monoxide
Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
to produce pure nickel.
Low-temperature methods
Intercalation method
Intercalation synthesis is the insertion of molecules or ions between layers of a solid. The layered solid has weak intermolecular bonds holding its layers together. The process occurs via diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
. Intercalation is further driven by ion exchange
Ion exchange is a reversible interchange of one species of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid. Ion exchange is used in softening or demineralizing of water, purification of ch ...
, acid-base reactions or electrochemical reactions. The intercalation method was first used in China with the discovery of porcelain
Porcelain (), also called china, is a ceramic material made by heating Industrial mineral, raw materials, generally including kaolinite, in a kiln to temperatures between . The greater strength and translucence of porcelain, relative to oth ...
. Also, graphene
Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
is produced by the intercalation method, and this method is the principle behind lithium-ion batteries
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. Li-ion batteries are characterized by higher specific energy, energy ...
.
Solution methods
It is possible to use solvent
A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
s to prepare solids by precipitation
In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, rain and snow mixed ("sleet" in Commonwe ...
or by evaporation
Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
. At times, the solvent is a hydrothermal
Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, ''water'',Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon. revised and augmented throughout by Sir Henry Stuart Jones. with th ...
that is under pressure at temperatures higher than the normal boiling point
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
The boiling point of a liquid varies depending upon the surrounding envi ...
. A variation on this theme is the use of flux methods, which use a salt with a relatively low melting point as the solvent.
Gas methods
Many solids react vigorously with gas species like chlorine
Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
, iodine
Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at , and boils to a vi ...
, and oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. Other solids form adduct
In chemistry, an adduct (; alternatively, a contraction of "addition product") is a product of a direct addition of two or more distinct molecules, resulting in a single reaction product containing all atoms of all components. The resultant is ...
s, such as CO or ethylene
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon–carbon bond, carbon–carbon doub ...
. Such reactions are conducted in open-ended tubes, which the gasses are passed through. Also, these reactions can take place inside a measuring device such as a TGA. In that case, stoichiometric
Stoichiometry () is the relationships between the masses of reactants and products before, during, and following chemical reactions.
Stoichiometry is based on the law of conservation of mass; the total mass of reactants must equal the total m ...
information can be obtained during the reaction, which helps identify the products.
Chemical vapour deposition
Chemical vapour deposition
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.
In typical CVD, the wafer (subst ...
is a method widely used for the preparation of coatings and semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s from molecular precursors. A carrier gas transports the gaseous precursors to the material for coating.
Characterization
This is the process in which a material’s chemical composition, structure, and physical properties are determined using a variety of analytical techniques.
New phases
Synthetic methodology and characterization often go hand in hand in the sense that not one but a series of reaction mixtures are prepared and subjected to heat treatment. Stoichiometry
Stoichiometry () is the relationships between the masses of reactants and Product (chemistry), products before, during, and following chemical reactions.
Stoichiometry is based on the law of conservation of mass; the total mass of reactants must ...
, a numerical relationship between the quantities of reactant and product, is typically varied systematically. It is important to find which stoichiometries will lead to new solid compounds or solid solutions between known ones. A prime method to characterize the reaction products is powder diffraction
Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is ca ...
because many solid-state reactions will produce polycrystalline molds or powders. Powder diffraction aids in the identification of known phases in the mixture. If a pattern is found that is not known in the diffraction data libraries, an attempt can be made to index the pattern. The characterization of a material's properties is typically easier for a product with crystalline structures.
Compositions and structures
Once the unit cell of a new phase is known, the next step is to establish the stoichiometry of the phase. This can be done in several ways. Sometimes the composition of the original mixture will give a clue, under the circumstances that only a product with a single powder pattern is found or a phase of a certain composition is made by analogy to known material, but this is rare.
Often, considerable effort in refining the synthetic procedures is required to obtain a pure sample of the new material. If it is possible to separate the product from the rest of the reaction mixture, elemental analysis
Elemental analysis is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, minerals, chemical compounds) is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualita ...
methods such as scanning electron microscopy
A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that ...
(SEM) and transmission electron microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
(TEM) can be used. The detection of scattered and transmitted electrons from the surface of the sample provides information about the surface topography and composition of the material. Energy dispersive X-ray spectroscopy (EDX) is a technique that uses electron beam excitation. Exciting the inner shell of an atom with incident electrons emits characteristic X-rays with specific energy to each element. The peak energy can identify the chemical composition of a sample, including the distribution and concentration.Similar to EDX, X-ray diffraction
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. ...
analysis (XRD) involves the generation of characteristic X-rays upon interaction with the sample. The intensity of diffracted rays scattered at different angles is used to analyze the physical properties of a material such as phase composition and crystallographic structure. These techniques can also be coupled to achieve a better effect. For example, SEM is a useful complement to EDX due to its focused electron beam, it produces a high-magnification image that provides information on the surface topography. Once the area of interest has been identified, EDX can be used to determine the elements present in that specific spot. Selected area electron diffraction can be coupled with TEM or SEM to investigate the level of crystallinity and the lattice parameters of a sample.
More information
X-ray diffraction is also used due to its imaging capabilities and speed of data generation. The latter often requires ''revisiting'' and refining the preparative procedures and that are linked to the question of which phases are stable at what composition and what stoichiometry. In other words, what the phase diagram looks like. An important tool in establishing this are thermal analysis
Thermal analysis is a branch of materials science where the properties of materials are studied as they change with temperature. Several methods are commonly used – these are distinguished from one another by the property which is measured:
* D ...
techniques like DSC DSC or Dsc may refer to:
Education
* Doctor of Science (D.Sc.)
* District Selection Committee, an entrance exam in India
* Doctor of Surgical Chiropody, superseded in the 1960s by Doctor of Podiatric Medicine
Educational institutions
* Dyal Sin ...
or DTA and increasingly also, due to the advent of synchrotron
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The strength of the magnetic field which bends the particle beam i ...
s, temperature-dependent powder diffraction. Increased knowledge of the phase relations often leads to further refinement in synthetic procedures in an iterative way. New phases are thus characterized by their melting points and their stoichiometric domains. The latter is important for the many solids that are non-stoichiometric compounds. The cell parameters obtained from XRD are particularly helpful to characterize the homogeneity ranges of the latter.
Local structure
In contrast to the large structures of crystals, the local structure describes the interaction of the nearest neighbouring atoms. Methods of nuclear spectroscopy use specific nuclei to probe the electric and magnetic fields around the nucleus. E.g. electric field gradients are very sensitive to small changes caused by lattice expansion/compression (thermal or pressure), phase changes, or local defects. Common methods are Mössbauer spectroscopy and perturbed angular correlation.
Optical properties
For metallic materials, their optical properties arise from the collective excitation of conduction electrons. The coherent oscillations of electrons under electromagnetic radiation along with associated oscillations of the electromagnetic field are called surface plasmon resonances. The excitation wavelength and frequency of the plasmon resonances provide information on the particle's size, shape, composition, and local optical environment.
For non-metallic materials or semiconductor
A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
s, they can be characterized by their band structure. It contains a band gap
In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to t ...
that represents the minimum energy difference between the top of the valence band and the bottom of the conduction band. The band gap can be determined using Ultraviolet-visible spectroscopy to predict the photochemical properties of the semiconductors.
Further characterization
In many cases, new solid compounds are further characterized[cf. Chapter 2 of ''New directions in Solid State Chemistry''. C. N. R. Rao and J. Gopalakrishnan. Cambridge U. Press 1997 ] by a variety of techniques that straddle the fine line that separates solid-state chemistry from solid-state physics. See Characterisation in material science for additional information.
References
External links
*
Sadoway, Donald. 3.091SC; Introduction to Solid State Chemistry, Fall 2010. (Massachusetts Institute of Technology: MIT OpenCourseWare)
{{Authority control
Solid-state chemistry,
Materials science