History
Solar distillation has been used for thousands of years. Early Greek mariners and Persian alchemists produced both freshwater and medicinal distillates. Solar stills were the first method used on a large scale to convert contaminated water into a potable form.Kalogirou, S. (2009). Solar energy engineering: Processes and systems. Burlington, MA: Elsevier/Academic Press. In 1870 the first US patent was granted for a solar distillation device to Norman Wheeler and Walton Evans. Two years later in Las Salinas, Chile, Swedish engineer Charles Wilson began building a solar distillation plant to supply freshwater to workers at a saltpeter and silver mine. It operated continuously for 40 years and distilled an average of 22.7 m3 of water a day using the effluent from mining operations as its feed water.Delyannis, E. (2003). Historic background of desalination and renewable energies, Solar Energy, 75(5), 357-366. Solar desalination in the United States began in the early 1950s when Congress passed the Conversion of Saline Water Act, which led to the establishment of the Office of Saline Water (OSW) in 1955. OSW's main function was to administer funds for desalination research and development projects. One of five demonstration plants was located inMethods
Indirect
Large solar desalination plants typically use indirect methods. Indirect solar desalination processes are categorized into single-phase processes (membrane based) and phase change processes (non-membrane based). Single-phase desalination use photovoltaics to produce electricity that drive pumps. Phase-change (or multi-phase) solar desalination is not membrane-based.Sarwar, J.; Mansoor, B. (2016-07-15). "Characterization of thermophysical properties of phase change materials for non-membrane based indirect solar desalination application". ''Energy Conversion and Management''. 120: 247–256. doi:10.1016/j.enconman.2016.05.002. ISSN 0196-8904. Single-phase desalination processes includeDirect
Direct methods use thermal energy to vaporize the seawater as part of a 2-phase separation. Such methods are relatively simple and require little space so they are normally used on small systems. However, they have a low production rate due to low operating temperature and pressure, so they are appropriate for systems that yield 200 m3/day.Single-effect
This uses the same process as rainfall. A transparent cover encloses a pan where saline water is placed. The latter traps solar energy, evaporating the seawater. The vapor condenses on the inner face of a sloping transparent cover, leaving behind salts, inorganic and organic components and microbes. The direct method achieves values of 4-5 L/m2/day and efficiency of 30-40%. Efficiency can be improved to 45% by using a double slope or an additional condenser. In a wick still, feed water flows slowly through a porous radiation-absorbing pad. This requires less water to be heated and is easier to change the angle towards the sun which saves time and achieves higher temperatures. A diffusion still is composed of a hot storage tank coupled to a solar collector and the distillation unit. Heating is produced by the thermal diffusion between them. Increasing the internal temperature using an external energy source can improve productivity.Indirect multi-phase
Multi-stage flash distillation (MSF)
Multi-stage flash distillation is in widespread use. As of 2009, it accounted for roughly 45% of the world desalination capacity and 93% of thermal systems. In Margherita di Savoia, Italy a 50–60 m3/day MSF plant uses a salinity gradient solar pond. In El Paso, Texas a similar project produces 19 m3/day. In Kuwait a MSF facility uses parabolic trough collectors to provide solar thermal energy to produce 100 m3 of fresh water a day. And in Northern China an experimental, automatic, unmanned operation uses 80 m2 of vacuum tube solar collectors coupled with a 1 kW wind turbine (to drive several small pumps) to produce 0.8 m3/day. MSF solar distillation has an output capacity of 6–60 L/m2/day versus the 3-4 L/m2/day standard output of a solar still. MSF experience poor efficiency during start-up or low energy periods. Achieving highest efficiency requires controlled pressure drops across each stage and steady energy input. As a result, solar applications require some form of thermal energy storage to deal with cloud interference, varying solar patterns, nocturnal operation, and seasonal temperature changes. As thermal energy storage capacity increases a more continuous process can be achieved and production rates approach maximum efficiency.Freezing
Although it has only been used on demonstration projects, this indirect method based on crystallization of the saline water has the advantage of the low energy required. Since the latent heat of fusion of water is 6,01 kJ/mole and the latent heat of vaporization at 100 °C is 40,66 kJ/mole, it should be cheaper in terms of energy cost. Furthermore, the corrosion risk is lower too. There is forever a disadvantage related with the difficulties of mechanically moving mixtures of ice and liquid. The process has not been commercialized yet due to cost and difficulties with refrigeration systems. The most studied way of using this process is the refrigeration freezing. A refrigeration cycle is used to cool the water stream to form ice, and after that those crystals are separated and melted to obtain fresh water. There are some recent examples of this solar powered processes: the unit constructed in Saudi Arabia by Chicago Bridge and Iron Inc. in the late 1980s, which was shut down for its inefficiency. Nevertheless, there is a recent study for the saline groundwater concluding that a plant capable of producing 1 million gal/day would produce water at a cost of $1.30/1000 gallons. Being this true, it would be a cost-competitive device with the reverse osmosis ones.Problems with thermal systems
Inherent design problems face thermal solar desalination projects. First, the system's efficiency is governed by competing heat and mass transfer rates during evaporation and condensation. Second, the heat of condensation is valuable because it takes large amounts of solar energy to evaporate water and generate saturated, vapor-laden hot air. This energy is, by definition, transferred to the condenser's surface during condensation. With most solar stills, this heat is emitted as waste heat.Solutions
Heat recovery allows the same heat input to be reused, providing several times the water. One solution is to reduce the pressure within the reservoir. This can be accomplished using a vacuum pump, and significantly decreases the required heat energy. For example, water at a pressure of 0.1 atmospheres boils at rather than .Solar humidification–dehumidification
The solar humidification–dehumidification (HDH) process (also called the multiple-effect humidification–dehumidification process, solar multistage condensation evaporation cycle (SMCEC) orSingle-phase solar desalination
In indirect, or single phase, solar-powered desalination, two systems are combined: a solar energy collection system (e.g. photovoltaic panels) and a desalination system such asReverse osmosis
RO is the most common desalination process due to its efficiency compared to thermal desalination systems, despite the need for water pre-treatment. Economic and reliability considerations are the main challenges to improving PV powered RO desalination systems. However, plummeting PV panel costs make solar-powered desalination more feasible. Solar-powered RO desalination is common in demonstration plants due to the modularity and scalability of both PV and RO systems. An economic analysis that explored an optimisation strategy of PV-powered RO reported favorable results. PV converts solar radiation into direct-current (DC) electricity, which powers the RO unit. The intermittent nature of sunlight and its variable intensity throughout the day complicates PV efficiency prediction and limits night-time desalination. Batteries can store solar energy for later use. Similarly, thermal energy storage systems ensure constant performance after sunset and on cloudy days.Low temperature desalination using solar collectors augmented by thermal energy storageElectrodialysis
Both electrodialysis (ED) and reverse electrodialysis (RED) use selective ion transport through ion exchange membranes (IEMs) due either to the influence of concentration difference (RED) or electrical potential (ED). In ED, an electrical force is applied to the electrodes; the cations travel toward the cathode and anions travel toward the anode. The exchange membranes only allow the passage of its permeable type (cation or anion), hence with this arrangement, diluted and concentrated salt solutions are placed in the space between the membranes (channels). The configuration of this stack can be either horizontal or vertical. The feed water passes in parallel through all the cells, providing a continuous flow of permeate and brine. Although this is a well-known process electrodialysis is not commercially suited for seawater desalination, because it can be used only for brackish water (TDS < 1000 ppm). Due to the complexity for modelingSee also
* Point Paterson Desalination PlantReferences
External links
* {{Cite web, date=2021-04-28, last=Irving, first=Michael, title=Efficient solar desalination unit uses titanium-coated diaper material, url=https://newatlas.com/environment/solar-desalination-unit-titanium-diaper/, access-date=2021-05-03, website=New Atlas, language=en-US Water treatment Water technology Water conservation Water desalination