
Soil fertility refers to the ability of
soil
Soil, also commonly referred to as earth, is a mixture of organic matter, minerals, gases, water, and organisms that together support the life of plants and soil organisms. Some scientific definitions distinguish dirt from ''soil'' by re ...
to sustain agricultural
plant growth
Important structures in plant development are buds, Shoot (botany), shoots, roots, leaf, leaves, and flowers; plants produce these tissues and structures throughout their life from meristems located at the tips of organs, or between mature tissues. ...
, i.e. to provide plant
habitat
In ecology, habitat refers to the array of resources, biotic factors that are present in an area, such as to support the survival and reproduction of a particular species. A species' habitat can be seen as the physical manifestation of its ...
and result in sustained and consistent
yields of high quality.
[Bodenfruchtbarkeit](_blank)
Retrieved on 2015-11-09. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time. A fertile soil has the following properties:
* The ability to supply
essential plant nutrients and water in adequate amounts and proportions for plant growth and reproduction; and
* The absence of
toxic substances which may inhibit plant growth e.g. Fe
2+ which leads to nutrient toxicity.
The following properties contribute to soil fertility in most situations:
* Sufficient soil depth for adequate root growth and water retention;
* Good internal
drainage
Drainage is the natural or artificial removal of a surface's water and sub-surface water from an area with excess water. The internal drainage of most agricultural soils can prevent severe waterlogging (anaerobic conditions that harm root gro ...
, allowing sufficient aeration for optimal root growth (although some plants, such as rice, tolerate waterlogging);
* Topsoil or horizon O is with sufficient
soil organic matter
Soil organic matter (SOM) is the organic matter component of soil, consisting of plant and animal detritus at various stages of decomposition, cells and tissues of soil microbes, and substances that soil microbes synthesize. SOM provides numerou ...
for healthy
soil structure
In geotechnical engineering, soil structure describes the arrangement of the solid parts of the soil and of the Pore space in soil, pore space located between them. It is determined by how individual soil granules clump, bind together, and Soil a ...
and
soil moisture
Soil moisture is the water content of the soil. It can be expressed in terms of volume or weight. Soil moisture measurement can be based on ''in situ'' probes (e.g., capacitance probes, neutron probes) or remote sensing methods.
Water that enters ...
retention;
*
Soil pH
Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the neg ...
in the range 5.5 to 7.0 (suitable for most plants but some prefer or tolerate more acid or alkaline conditions);
* Adequate concentrations of
essential plant nutrients in plant-available forms;
* Presence of a range of
microorganisms
A microorganism, or microbe, is an organism of microscopic size, which may exist in its single-celled form or as a colony of cells. The possible existence of unseen microbial life was suspected from antiquity, with an early attestation in ...
that support plant growth.
In lands used for
agriculture
Agriculture encompasses crop and livestock production, aquaculture, and forestry for food and non-food products. Agriculture was a key factor in the rise of sedentary human civilization, whereby farming of domesticated species created ...
and other human activities, maintenance of soil fertility typically requires the use of
soil conservation
Soil conservation is the prevention of loss of the topmost layer of the soil from erosion or prevention of reduced fertility caused by over usage, Soil acidification, acidification, salinization or other chemical soil contamination
Slash-and-b ...
practices. This is because
soil erosion
Soil erosion is the denudation or wearing away of the Topsoil, upper layer of soil. It is a form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, Atmosphere of Ea ...
and other forms of
soil degradation
Soil retrogression and degradation are two regressive evolution processes associated with the loss of equilibrium of a soil health, stable soil. Retrogression is primarily due to soil erosion and corresponds to a phenomenon where succession revert ...
generally result in a decline in quality with respect to one or more of the aspects indicated above.
Soil fertility and quality of land have been impacted by the effects of colonialism and slavery both in the U.S. and globally. The introduction of harmful land practices such as intensive and non-prescribed burnings and deforestation by colonists created long-lasting negative results to the environment.
Soil fertility and depletion have different origins and consequences in various parts of the world. The intentional creation of dark earth in the Amazon promotes the important relationship between indigenous communities and their land. In African and Middle Eastern regions, humans and the environment are also altered due to soil depletion.
Soil fertilization
Bioavailable
In pharmacology, bioavailability is a subcategory of absorption and is the fraction (%) of an administered drug that reaches the systemic circulation.
By definition, when a medication is administered intravenously, its bioavailability is 100%. H ...
phosphorus (available to soil life) is the element in soil that is most often lacking. Nitrogen and potassium are also needed in substantial amounts. For this reason these three elements are always identified on a commercial fertilizer analysis. For example, a 10-10-15 fertilizer has 10 percent nitrogen, 10 percent available phosphorus (P
2O
5) and 15 percent water-soluble potassium (K
2O). Sulfur is the fourth element that may be identified in a commercial analysis—e.g. 21-0-0-24 which would contain 21% nitrogen and 24% sulfate.
Inorganic fertilizers are generally less expensive and have higher concentrations of nutrients than organic fertilizers. Also, since nitrogen, phosphorus and potassium generally must be in the inorganic forms to be taken up by plants, inorganic fertilizers are generally immediately bioavailable to plants without modification. However, studies suggest that chemical fertilizers have adverse health impacts on humans including the development of chronic disease from the toxins. As for the environment, over-reliance on inorganic fertilizers disrupts the natural nutrient balance in the soil, resulting in lower soil quality, loss of organic matter, and higher chances for erosion in the soil.
Additionally, the water-soluble nitrogen in inorganic fertilizers does not provide for the long-term needs of the plant and creates water pollution. Slow-release fertilizers may reduce leaching loss of nutrients and may make the nutrients that they provide available over a longer period of time.
Soil fertility is a complex process that involves the constant cycling of nutrients between organic and inorganic forms. As plant material and animal wastes are decomposed by micro-organisms, they release inorganic nutrients to the soil solution, a process referred to as
mineralization. Those nutrients may then undergo further transformations which may be aided or enabled by soil micro-organisms. Like plants, many micro-organisms require or preferentially use inorganic forms of nitrogen, phosphorus or potassium and will compete with plants for these nutrients, tying up the nutrients in microbial
biomass
Biomass is a term used in several contexts: in the context of ecology it means living organisms, and in the context of bioenergy it means matter from recently living (but now dead) organisms. In the latter context, there are variations in how ...
, a process often called
immobilization. The balance between immobilization and mineralization processes depends on the balance and availability of major nutrients and organic carbon to soil microorganisms. Natural processes such as lightning strikes may fix atmospheric nitrogen by converting it to (NO
2). Denitrification may occur under anaerobic conditions (flooding) in the presence of denitrifying bacteria. Nutrient cations, including potassium and many micronutrients, are held in relatively strong bonds with the negatively charged portions of the soil in a process known as
cation exchange
Ion exchange is a reversible interchange of one species of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid. Ion exchange is used in softening or demineralizing of water, purification of ch ...
.
Phosphorus is a primary factor of soil fertility as it is an element of plant nutrients in the soil. It is essential for cell division and plant development, especially in seedlings and young plants. However, phosphorus is becoming increasingly harder to find and its reserves are starting to be depleted due to the excessive use as a fertilizer. The widespread use of phosphorus in fertilizers has led to pollution and
eutrophication
Eutrophication is a general term describing a process in which nutrients accumulate in a body of water, resulting in an increased growth of organisms that may deplete the oxygen in the water; ie. the process of too many plants growing on the s ...
. Recently the term
peak phosphorus has been coined, due to the limited occurrence of rock phosphate in the world.
A wide variety of materials have been described as
soil conditioner
A soil conditioner is a product which is added to soil to improve the soil’s physical qualities, usually its fertility (ability to provide nutrition for plants) and sometimes its mechanics. In general usage, the term "soil conditioner" is often ...
s due to their ability to improve
soil quality
Soil quality refers to the condition of soil based on its capacity to perform ecosystem services that meet the needs of human and non-human life.Tóth, G., Stolbovoy, V. and Montanarella, 2007. Soil Quality and Sustainability Evaluation - An integ ...
, including
biochar
Biochar is a form of charcoal, sometimes modified, that is intended for organic use, as in soil. It is the lightweight black remnants remaining after the pyrolysis of biomass, consisting of carbon and ashes. Despite its name, biochar is steril ...
, offering multiple
soil health
Soil health is a state of a soil meeting its range of ecosystem functions as appropriate to its environment. In more colloquial terms, the health of soil arises from favorable interactions of all soil components (living and non-living) that belong ...
benefits.
Food waste
The causes of food going uneaten are numerous and occur throughout the food system, during food production, production, food processing, processing, Food distribution, distribution, Grocery store, retail and food service sales, and Social clas ...
compost
Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by Decomposition, decomposing plant and food waste, recycling organic materials, and man ...
was found to have better soil improvement than
manure
Manure is organic matter that is used as organic fertilizer in agriculture. Most manure consists of animal feces; other sources include compost and green manure. Manures contribute to the fertility of soil by adding organic matter and nut ...
based compost.
Light and CO2 limitations
Photosynthesis
Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
is the process whereby plants use light energy to drive chemical reactions which convert CO
2 into sugars. As such, all plants require access to both light and carbon dioxide to produce energy, grow and reproduce.
While typically limited by nitrogen, phosphorus and potassium, low levels of carbon dioxide can also act as a limiting factor on plant growth. Peer-reviewed and published scientific studies have shown that increasing CO
2 is highly effective at promoting plant growth up to levels over 300 ppm. Further increases in CO
2 can, to a very small degree, continue to increase net photosynthetic output.
Soil depletion
Soil depletion occurs when the components which contribute to fertility are removed and not replaced, and the conditions which support soil's fertility are not maintained. This leads to poor crop yields. In agriculture, depletion can be due to excessively intense cultivation and inadequate
soil management
Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance (such as soil fertility or soil mechanics). It includes soil conservation, soil amendment, and optimal soil health. In agricult ...
. Depletion may occur through a variety of other effects, including overtillage (which damages soil structure), underuse of nutrient inputs which leads to mining of the soil nutrient bank, and
salinization of soil.
Colonial Impacts on Soil Depletion
Soil fertility can be severely challenged when
land-use change
Land use is an umbrella term to describe what happens on a parcel of land. It concerns the benefits derived from using the land, and also the land management actions that humans carry out there. The following categories are used for land use: for ...
s rapidly. For example, in
Colonial New England, colonists made a number of decisions that depleted the soils, including: allowing herd animals to wander freely, not replenishing soils with manure, and a sequence of events that led to erosion.
[Cronon, William, ''Changes in the Land: Indians, Colonists, and the Ecology of New England,'' NY: Hill & Wang, 1983, pp. 145–152.] William Cronon wrote that "...the long-term effect was to put those soils in jeopardy. The removal of the forest, the increase in destructive floods, the soil compaction and close-cropping wrought by grazing animals, ploughing—all served to increase erosion." Cronon continues, explaining, “Where mowing was unnecessary and grazing among living trees was possible, settlers saved labor by simply burning the forest undergrowth...and turning loose their cattle...In at least one ill-favored area, the inhabitants of neighboring towns burned so frequently and graze so intensively that…the timber was greatly injured, and the land became hard to subdue...In the long run, cattle tended to encourage the growth of woody, thorn-bearing plants which they could not eat and which, once established, were very difficult to remove”. These practices were methods of simplifying labor for colonial settlers in new lands when they were not familiar with traditional Indigenous agricultural methods. Those Indigenous communities were not consulted but rather forced out of their homelands so European settlers could commodify their resources. The practice of intensive land burning and turning loose cattle ruined soil fertility and prohibited sustainable crop growth.
While colonists utilized fire to clear land, certain prescribed burning practices are common and valuable to increase biodiversity and in turn, benefit soil fertility. Without consideration of the intensity, seasonality, and frequency of the burns, the conservation of biodiversity and the overall health of the soil can be negatively impacted by fire.
In addition to soil erosion through using too much or too little fire, colonial agriculture also resulted in topsoil depletion. Topsoil depletion occurs when the nutrient-rich organic
topsoil
Topsoil is the upper layer of soil. It has the highest concentration of organic matter and microorganisms and is where most of the Earth's biological soil activity occurs.
Description
Topsoil is composed of mineral particles and organic mat ...
, which takes hundreds to thousands of years to build up under natural conditions, is eroded or depleted of its original organic material. The Dust Bowl in the
Great Plains
The Great Plains is a broad expanse of plain, flatland in North America. The region stretches east of the Rocky Mountains, much of it covered in prairie, steppe, and grassland. They are the western part of the Interior Plains, which include th ...
of North America is a great example of this with about one-half of the original topsoil of the great plains having disappeared since the beginning of agricultural production there in the 1880s. Outside of the context of colonialism topsoil depletion can historically be attributed to many past civilizations' collapses.
Soil Depletion and Enslavement
As historian David Silkenat explains, the goals of Southern plantation and slave owners, instead of measuring productivity based on outputs per acre, were to maximize the amount of labor that could be extracted from the enslaved workforce. The landscape was seen as disposable, and the African slaves were seen as expendable. Once these Southern farmers forced slaves to leach soils and engage in mass deforestation, they would discard the land and move towards more fertile prospects. The forced slave practices created extensive destruction on the land. The environmental impact included draining swamps, clearing forests for monocropping and fuel steamships, and introducing invasive species, all leading to fragile ecosystems. In the aftermath, these ecosystems left hillsides eroded, rivers clogged with sterile soil, and extinction of native species. Silkenat summarizes this phenomenon of the relationship between enslavement and soil, “Although typically treated separately, slavery and the environment naturally intersect in complex and powerful ways, leaving lasting effects from the period of emancipation through modern-day reckonings with racial justice…the land too fell victim to the slave owner’s lash”.
Global Soil Depletion
One of the most widespread occurrences of soil depletion is in tropical zones where nutrient content of soils is low. The depletion of soil has affected the state of plant life and crops in agriculture in many countries. In the Middle East for example, many countries find it difficult to grow produce because of droughts, lack of soil, and lack of irrigation. The
Middle East
The Middle East (term originally coined in English language) is a geopolitical region encompassing the Arabian Peninsula, the Levant, Turkey, Egypt, Iran, and Iraq.
The term came into widespread usage by the United Kingdom and western Eur ...
has three countries that indicate a decline in crop production, the highest rates of productivity decline are found in hilly and dryland areas.
Many countries in Africa also undergo a depletion of fertile soil. In regions of dry climate like
Sudan
Sudan, officially the Republic of the Sudan, is a country in Northeast Africa. It borders the Central African Republic to the southwest, Chad to the west, Libya to the northwest, Egypt to the north, the Red Sea to the east, Eritrea and Ethiopi ...
and the countries that make up the
Sahara Desert
The Sahara (, ) is a desert spanning across North Africa. With an area of , it is the largest hot desert in the world and the list of deserts by area, third-largest desert overall, smaller only than the deserts of Antarctica and the northern Ar ...
, droughts and soil degradation is common. Cash crops such as teas, maize, and beans require a variety of nutrients in order to grow healthy. Soil fertility has declined in the farming regions of Africa and the use of artificial and natural fertilizers has been used to regain the nutrients of ground soil.
Dark Earths
South America
The details of Indigenous societies prior to European colonization in 1492 within the Amazonian regions of South America, particularly the size of the communities and the depth of interactions with the environment, are continually debated. Central to the debate is the influence of Dark Earth. Dark Earth is a type of soil found in the Amazon that has a darker color, higher organic carbon content, and higher fertility than soil in other regions of South America which makes it highly coveted even today. Dark Earth deposits have been found, through ethnographic and archaeological studies, to have been created through ancient Indigenous practices by intentional soil management.
Ethnoarchaeologist Morgan Schmidt outlines how this carbon-rich soil was intentionally created by communities in the Amazon. While Dark Earth, and other anthropic soils, can be found all throughout the world, Amazonian Dark Earth is particularly significant because “it contrasts too sharply with the especially poor fertility of typical highly weathered tropical upland soils in the Amazon”. There is much evidence to suggest that the development of ancient agricultural societies in the Amazon was strongly influenced by the formation of Dark Earth. As a result, Amazonian societies benefitted from the dark earth in terms of agricultural success and enhanced food production. Soil analyses have been completed on the modern and ancient Kuikuro Indigenous Territory in the Upper Xingu River basin in southeastern Amazonia through archaeological and ethnographic research to determine the human relation to the soil. The “results demonstrate the intentional creation of dark earth, highlighting how Indigenous knowledge can provide strategies for sustainable rainforest management”.
Africa
In Egypt, earthworms of the Nile River Valley contributed to the significant fertility of the soils. As a result, Cleopatra declared the earthworm a sacred animal to recognize the animal’s positive impact. No one, including farmers, was “allowed to harm or remove an earthworm for fear of offending the deity of fertility”. In Ghana and Liberia, it is a long-withstanding practice to combine different types of waste to create fertile soil that is referred to as African Dark Earths. This soil, contains high concentrations of calcium, phosphorus, and carbon.
Humans and Soil
Albert Howard is credited as the first Westerner to publish Native techniques of sustainable agriculture. As noted by Howard in 1944, “In all future studies of disease we must, therefore, always begin with the soil. This must be gotten into good condition first of all and then the reaction of the soil, the plant, animal, and man observed. Many diseases will then automatically disappear...Soil fertility is the basis of the public health system of the future...”. Howard connects the health crises of crops to the impacts of livestock and human health, ultimately spreading the message that humans must respect and restore the soil for the benefit of the human and non-human world. He continues that industrial agriculture disrupts the delicate balance of nature and irrevocably robs the soil of its fertility.
Irrigation effects
Irrigation
Irrigation (also referred to as watering of plants) is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has bee ...
is a process by which crops are watered by man-made means, such as bringing in water from pipes, canals, or sprinklers. Irrigation is used when the natural rainfall patterns of a region are not sustainable enough to maintain crops. Ancient civilizations heavily relied on irrigation and today about 18% of the world's cropland is irrigated.
The quality of irrigation water is very important to maintain soil fertility and
tilth
Tilth is a physical condition of soil, especially in relation to its suitability for planting or growing a crop. Factors that determine tilth include the formation and stability of aggregated soil particles, moisture content, degree of aeration, ...
, and for using more soil depth by the plants.
[Managing Soil Tilth; Colorado state university garden notes](_blank)
Retrieved on 2014-10-04. When soil is irrigated with high alkaline water, unwanted sodium salts build up in the soil which would make soil draining capacity very poor. So plant roots can not penetrate deep into the soil for optimum growth in
Alkali soils. When soil is
irrigated with low pH / acidic water, the useful salts (Ca, Mg, K, P, S, etc.) are removed by draining water from the
acidic soil
Soil pH is a measure of the acidity or basicity (alkalinity) of a soil. Soil pH is a key characteristic that can be used to make informative analysis both qualitative and quantitatively regarding soil characteristics. pH is defined as the nega ...
and in addition unwanted aluminium and manganese salts to the plants are dissolved from the soil impeding plant growth.
[Managing irrigation water quality, Oregon State University, US](_blank)
Retrieved on 2012-10-04. When soil is irrigated with high
salinity
Salinity () is the saltiness or amount of salt (chemistry), salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensio ...
water or sufficient water is not draining out from the irrigated soil, the soil would convert into
saline soil or lose its fertility. Saline water enhance the
turgor pressure
Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall.
It is also called ''hydrostatic pressure'', and is defined as the pressure in a fluid measured at a certain point within itself when at equilibri ...
or
osmotic pressure
Osmotic pressure is the minimum pressure which needs to be applied to a Solution (chemistry), solution to prevent the inward flow of its pure solvent across a semipermeable membrane.
It is also defined as the measure of the tendency of a soluti ...
requirement which impedes the off take of water and nutrients by the plant roots.
Top soil loss takes place in alkali soils due to erosion by rain water surface flows or drainage as they form colloids (fine mud) in contact with water. Plants absorb water-soluble inorganic salts only from the soil for their growth. Soil as such does not lose fertility just by growing crops but it lose its fertility due to accumulation of unwanted and depletion of wanted inorganic salts from the soil by improper irrigation and acid rain water (quantity and quality of water). The fertility of many soils which are not suitable for plant growth can be enhanced many times gradually by providing adequate irrigation water of suitable quality and good drainage from the soil.
Global distribution
See also
*
Arable land
Arable land (from the , "able to be ploughed") is any land capable of being ploughed and used to grow crops.''Oxford English Dictionary'', "arable, ''adj''. and ''n.''" Oxford University Press (Oxford), 2013. Alternatively, for the purposes of a ...
*
Plaggen soil
*
Shifting cultivation
Shifting cultivation is an agricultural system in which plots of land are cultivated temporarily, then abandoned while post-disturbance fallow vegetation is allowed to freely grow while the cultivator moves on to another plot. The period of cul ...
*
Soil contamination
Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activit ...
*
Soil life
Soil biology is the study of Soil microbiology, microbial and faunal activity and ecology in soil.
Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their biolo ...
*
Terra preta
''Terra preta'' (, literally "black soil" in Portuguese language, Portuguese), also known as Amazonian dark earth or Indian black earth, is a type of very dark, fertile human impact on the environment, anthropogenic soil (anthrosol) found in the ...
*
Cation-exchange capacity
Cation-exchange capacity (CEC) is a measure of how many cations can be retained on soil particle surfaces. Negative charges on the surfaces of soil particles bind positively-charged atoms or molecules (cations), but allow these to exchange with ot ...
References
{{Authority control
Soil
Soil improvers
Fertilizers
Horticulture