Site-specific recombination, also known as conservative site-specific recombination, is a type of
genetic recombination
Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryot ...
in which
DNA
Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
strand exchange takes place between segments possessing at least a certain degree of
sequence homology
Sequence homology is the homology (biology), biological homology between DNA sequence, DNA, RNA sequence, RNA, or Protein primary structure, protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments ...
.
Enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
s known as site-specific
recombinases (SSRs) perform rearrangements of DNA segments by recognizing and binding to short, specific DNA sequences (sites), at which they cleave the DNA backbone, exchange the two DNA helices involved, and rejoin the DNA strands. In some cases the presence of a recombinase enzyme and the recombination sites is sufficient for the reaction to proceed; in other systems a number of accessory proteins and/or accessory sites are required. Many different
genome modification strategies, among these
recombinase-mediated cassette exchange (RMCE), an advanced approach for the targeted introduction of transcription units into predetermined genomic loci, rely on SSRs.
Site-specific recombination systems are highly specific, fast, and efficient, even when faced with complex
eukaryotic
The eukaryotes ( ) constitute the Domain (biology), domain of Eukaryota or Eukarya, organisms whose Cell (biology), cells have a membrane-bound cell nucleus, nucleus. All animals, plants, Fungus, fungi, seaweeds, and many unicellular organisms ...
genomes.
They are employed naturally in a variety of cellular processes, including bacterial genome
replication, differentiation and
pathogenesis
In pathology, pathogenesis is the process by which a disease or disorder develops. It can include factors which contribute not only to the onset of the disease or disorder, but also to its progression and maintenance. The word comes .
Descript ...
, and movement of
mobile genetic elements
Mobile genetic elements (MGEs), sometimes called selfish genetic elements, are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another. MGEs are found in all organisms. In ...
. For the same reasons, they present a potential basis for the development of
genetic engineering
Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of Genetic engineering techniques, technologies used to change the genet ...
tools.
Recombination sites are typically between 30 and 200
nucleotide
Nucleotides are Organic compound, organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both o ...
s in length and consist of two motifs with a partial inverted-repeat symmetry, to which the recombinase binds, and which flank a central crossover sequence at which the recombination takes place. The pairs of sites between which the recombination occurs are usually identical, but there are exceptions (e.g.
attP and attB of λ integrase).
Classification: tyrosine- ''vs.'' serine- recombinases
Based on amino acid sequence homologies and mechanistic relatedness, most site-specific recombinases are grouped into one of two families: the
tyrosine (Tyr) recombinase family or
serine (Ser) recombinase family. The names stem from the conserved nucleophilic amino acid residue present in each class of recombinase which is used to attack the DNA and which becomes covalently linked to it during strand exchange. The earliest identified members of the serine recombinase family were known as
resolvases or
DNA invertases, while the founding member of the tyrosine recombinases,
lambda phage
Lambda phage (coliphage λ, scientific name ''Lambdavirus lambda'') is a bacterial virus, or bacteriophage, that infects the bacterial species ''Escherichia coli'' (''E. coli''). It was discovered by Esther Lederberg in 1950. The wild type of ...
integrase (using attP/B recognition sites), differs from the now well-known enzymes such as
Cre (from the
P1 phage) and
FLP (from the yeast ''
Saccharomyces cerevisiae
''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungal microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have be ...
''). Famous serine recombinases include enzymes such as
gamma-delta resolvase (from the Tn''1000''
transposon
A transposable element (TE), also transposon, or jumping gene, is a type of mobile genetic element, a nucleic acid sequence in DNA that can change its position within a genome.
The discovery of mobile genetic elements earned Barbara McClinto ...
),
Tn3 resolvase (from the Tn3 transposon), and
''φ''C31 integrase (from the ''φ''C31 phage).
There are several classes of serine recombinases, consisting of the small serine recombinase, the ISXc5 resolvase, the serine transposase, and the large serine recombinase.
Although the individual members of the two recombinase families can perform reactions with the same practical outcomes, the families are unrelated to each other, having different protein structures and reaction mechanisms. Unlike tyrosine recombinases, serine recombinases are highly modular, as was first hinted by biochemical studies
and later shown by crystallographic structures.
Knowledge of these protein structures could prove useful when attempting to re-engineer recombinase proteins as tools for genetic manipulation.
Mechanism
Recombination between two DNA sites begins by the recognition and binding of these sites – one site on each of two separate double-stranded DNA molecules, or at least two distant segments of the same molecule – by the recombinase enzyme. This is followed by
synapsis
Synapsis or Syzygy is the pairing of two chromosomes that occurs during meiosis. It allows matching-up of homologous pairs prior to their segregation, and possible chromosomal crossover between them. Synapsis takes place during prophase I of me ...
, i.e. bringing the sites together to form the synaptic complex. It is within this synaptic complex that the strand exchange takes place, as the DNA is cleaved and rejoined by controlled
transesterification
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. Strong acids catalyze the r ...
reactions. During strand exchange, each double-stranded DNA molecule is cut at a fixed point within the crossover region of the recognition site, releasing a
deoxyribose
Deoxyribose, or more precisely 2-deoxyribose, is a monosaccharide with idealized formula H−(C=O)−(CH2)−(CHOH)3−H. Its name indicates that it is a deoxy sugar, meaning that it is derived from the sugar ribose by loss of a hydroxy group. D ...
hydroxyl group
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
, while the recombinase enzyme forms a transient
covalent bond
A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
to a DNA backbone
phosphate
Phosphates are the naturally occurring form of the element phosphorus.
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthop ...
. This
phosphodiester bond
In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is d ...
between the hydroxyl group of the
nucleophilic serine
Serine
(symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − ...
or
tyrosine
-Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a conditionally essential amino acid with a polar side group. The word "tyrosine" is ...
residue conserves the energy that was expended in cleaving the DNA. Energy stored in this bond is subsequently used for the rejoining of the DNA to the corresponding deoxyribose hydroxyl group on the other DNA molecule. The entire reaction therefore proceeds without the need for external energy-rich
cofactors such as
ATP.
Although the basic chemical reaction is the same for both tyrosine and serine recombinases, there are some differences between them.
Tyrosine recombinases, such as
Cre or
FLP, cleave one DNA strand at a time at points that are staggered by 6–8bp, linking the 3' end of the strand to the hydroxyl group of the tyrosine nucleophile (Fig. 1).
Strand exchange then proceeds via a crossed strand intermediate analogous to the
Holliday junction in which only one pair of strands has been exchanged.
The mechanism and control of serine recombinases is much less well understood. This group of enzymes was only discovered in the mid-1990s and is still relatively small. The now classical members
gamma-delta and
Tn3 resolvase, but also new additions like φC31-, Bxb1-, and R4 integrases, cut all four DNA strands simultaneously at points that are staggered by 2 bp (Fig. 2).
During cleavage, a protein–DNA bond is formed via a
transesterification
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. Strong acids catalyze the r ...
reaction, in which a
phosphodiester bond
In chemistry, a phosphodiester bond occurs when exactly two of the hydroxyl groups () in phosphoric acid react with hydroxyl groups on other molecules to form two ester bonds. The "bond" involves this linkage . Discussion of phosphodiesters is d ...
is replaced by a phosphoserine bond between a 5' phosphate at the cleavage site and the hydroxyl group of the conserved serine residue (S10 in resolvase).
It is still not entirely clear how the strand exchange occurs after the DNA has been cleaved. However, it has been shown that the strands are exchanged while covalently linked to the protein, with a resulting net rotation of 180°.
The most quoted (but not the only) model accounting for these facts is the "subunit rotation model" (Fig. 2).
Independent of the model, DNA duplexes are situated outside of the protein complex, and large movement of the protein is needed to achieve the strand exchange. In this case the recombination sites are slightly asymmetric, which allows the enzyme to tell apart the left and right ends of the site. When generating products, left ends are always joined to the right ends of their partner sites, and vice versa. This causes different recombination hybrid sites to be reconstituted in the recombination products. Joining of left ends to left or right to right is avoided due to the asymmetric "overlap" sequence between the staggered points of top and bottom strand exchange, which is in stark contrast to the mechanism employed by tyrosine recombinases.
The reaction catalysed by Cre-recombinase, for instance, may lead to excision of the DNA segment flanked by the two sites (Fig. 3A), but may also lead to integration or inversion of the orientation of the flanked DNA segment (Fig. 3B). What the outcome of the reaction will be is dictated mainly by the relative locations and orientations of the sites that are to be recombined, but also by the innate specificity of the site-specific system in question. Excisions and inversions occur if the recombination takes place between two sites that are found on the same molecule (intramolecular recombination), and if the sites are in the same (direct repeat) or in an opposite orientation (inverted repeat), respectively. Insertions, on the other hand, take place if the recombination occurs on sites that are situated on two different DNA molecules (intermolecular recombination), provided that at least one of these molecules is circular. Most site-specific systems are highly specialised, catalysing only one of these different types of reaction, and have evolved to ignore the sites that are in the "wrong" orientation.
See also
*
Cre recombinase
*
Cre-Lox recombination
*
FLP-FRT recombination
*
Genetic recombination
Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryot ...
*
Homologous recombination
Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
*
Recombinase-mediated cassette exchange
*
Site-specific recombinase technology
References
{{reflist
Biotechnology
Cellular processes
Genetics techniques
Molecular biology
Molecular genetics