Sequential Hermaphroditism
   HOME

TheInfoList



OR:

Sequential hermaphroditism (called dichogamy in
botany Botany, also called plant science, is the branch of natural science and biology studying plants, especially Plant anatomy, their anatomy, Plant taxonomy, taxonomy, and Plant ecology, ecology. A botanist or plant scientist is a scientist who s ...
) is one of the two types of hermaphroditism, the other type being simultaneous hermaphroditism. It occurs when the organism's sex changes at some point in its life. A sequential hermaphrodite produces eggs (female
gamete A gamete ( ) is a Ploidy#Haploid and monoploid, haploid cell that fuses with another haploid cell during fertilization in organisms that Sexual reproduction, reproduce sexually. Gametes are an organism's reproductive cells, also referred to as s ...
s) and sperm (male
gamete A gamete ( ) is a Ploidy#Haploid and monoploid, haploid cell that fuses with another haploid cell during fertilization in organisms that Sexual reproduction, reproduce sexually. Gametes are an organism's reproductive cells, also referred to as s ...
s) at different stages in life. Sequential hermaphroditism occurs in many
fish A fish (: fish or fishes) is an aquatic animal, aquatic, Anamniotes, anamniotic, gill-bearing vertebrate animal with swimming fish fin, fins and craniate, a hard skull, but lacking limb (anatomy), limbs with digit (anatomy), digits. Fish can ...
,
gastropod Gastropods (), commonly known as slugs and snails, belong to a large Taxonomy (biology), taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (). This class comprises snails and slugs from saltwater, freshwater, and fro ...
s, and plants. Species that can undergo these changes do so as a normal event within their reproductive cycle, usually cued by either social structure or the achievement of a certain age or size. In animals, the different types of change are male to female (protandry or protandrous hermaphroditism), female to male (protogyny or protogynous hermaphroditism), and bidirectional (serial or bidirectional hermaphroditism). Both protogynous and protandrous hermaphroditism allow the organism to switch between functional male and functional female. Bidirectional hermaphrodites have the capacity for sex change in either direction between male and female or female and male, potentially repeatedly during their lifetime. These various types of sequential hermaphroditism may indicate that there is no advantage based on the original sex of an individual organism. Those that change gonadal sex can have both female and male germ cells in the
gonad A gonad, sex gland, or reproductive gland is a Heterocrine gland, mixed gland and sex organ that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gon ...
s or can change from one complete gonadal type to the other during their last life stage. In plants, individual flowers are called dichogamous if their function has the two sexes separated in time, although the plant as a whole may have functionally male and functionally female flowers open at any one moment. A flower is protogynous if its function is first female, then male, and protandrous if its function is first male then female. It used to be thought that this reduced
inbreeding Inbreeding is the production of offspring from the mating or breeding of individuals or organisms that are closely genetic distance, related genetically. By analogy, the term is used in human reproduction, but more commonly refers to the genet ...
, but it may be a more general mechanism for reducing pollen-pistil interference.


Zoology

Hermaphroditic fishes are almost exclusively sequential—simultaneous hermaphroditism is only known to occur in a few fishes, such as the Rivulid killifish '' Kryptolebias marmoratus'' and
hamlets A hamlet is a human settlement that is smaller than a town or village. This is often simply an informal description of a smaller settlement or possibly a subdivision or satellite entity to a larger settlement. Sometimes a hamlet is defined f ...
.
Teleost Teleostei (; Ancient Greek, Greek ''teleios'' "complete" + ''osteon'' "bone"), members of which are known as teleosts (), is, by far, the largest group of ray-finned fishes (class Actinopterygii), with 96% of all neontology, extant species of f ...
fishes are the only vertebrate lineage where sequential hermaphroditism occurs.


Protandry

In general, protandrous hermaphrodites are animals that develop as males, but can later reproduce as females. However, protandry features a spectrum of different forms, which are characterized by the overlap between male and female reproductive function throughout an organism's lifetime: # Protandrous sequential hermaphroditism: Early reproduction as a pure male and later reproduction as a pure female. # Protandrous hermaphroditism with overlap: Early reproduction as a pure male and later reproduction as a pure female with an intervening overlap between both male and female reproduction. # Protandrous simultaneous hermaphroditism: Early pure male reproduction and later reproduction in both sexes. Furthermore, there are also species that reproduce as both sexes throughout their lifespans (i.e simultaneous hermaphrodites), but shift their reproductive resources from male to female over time.


Protandrous examples

Protandry occurs in a widespread range of animal phyla. In fact, protandrous hermaphroditism occurs in many fish, mollusks, and
crustacean Crustaceans (from Latin meaning: "those with shells" or "crusted ones") are invertebrate animals that constitute one group of arthropods that are traditionally a part of the subphylum Crustacea (), a large, diverse group of mainly aquatic arthrop ...
s, but is completely absent in terrestrial vertebrates. Protandrous fishes include teleost species in the families
Pomacentridae Pomacentridae is a family of ray-finned fish, comprising the damselfishes and clownfishes. This family were formerly placed in the order Perciformes or as indeterminate percomorphs, but are now considered basal blenniiforms. They are primaril ...
,
Sparidae Sparidae is a family of ray-finned fishes belonging to the order Spariformes, the seabreams and porgies, although they were traditionally classified in the order Perciformes. The over 150 species are found in shallow and deep marine waters in t ...
, and
Gobiidae Gobiidae or gobies is a family (biology), family of bony fish in the order (biology), order Gobiiformes, one of the largest fish families comprising over 2,000 species in more than 200 genus, genera. Most of gobiid fish are relatively small, typ ...
. A common example of a protandrous species are clownfish, which have a very structured society. In the species '' Amphiprion percula'', there are zero to four individuals excluded from breeding and a breeding pair living in a
sea anemone Sea anemones ( ) are a group of predation, predatory marine invertebrates constituting the order (biology), order Actiniaria. Because of their colourful appearance, they are named after the ''Anemone'', a terrestrial flowering plant. Sea anemone ...
. Dominance is based on size, the female being the largest and the reproductive male being the second largest. The rest of the group is made up of progressively smaller males that do not breed and have no functioning gonads. If the female dies, in many cases, the reproductive male gains weight and becomes the female for that group. The largest non-breeding male then sexually matures and becomes the reproductive male for the group. Other protandrous fishes can be found in the classes clupeiformes, siluriformes, stomiiformes. Since these groups are distantly related and have many intermediate relatives that are not protandrous, it strongly suggests that protandry evolved multiple times. Phylogenies support this assumption because ancestral states differ for each family. For example, the ancestral state of the family Pomacentridae was gonochoristic (single-sexed), indicating that protandry evolved within the family. Therefore, because other families also contain protandrous species, protandry likely has evolved multiple times. Other examples of protandrous animals include: * The
Platyctenida Platyctenida, also known as benthic comb jellies, is an order of comb jellies in the class Tentaculata. Platyctenids display a generally benthic lifestyle in contrast to most ctenophores being largely pelagic. Platyctenids display widely differi ...
order of comb jellies. Unlike most
ctenophores Ctenophora (; : ctenophore ) is a phylum of marine invertebrates, commonly known as comb jellies, that marine habitats, inhabit sea waters worldwide. They are notable for the groups of cilia they use for swimming (commonly referred to as "combs ...
, which are simultaneous hermaphrodites,
Platyctenida Platyctenida, also known as benthic comb jellies, is an order of comb jellies in the class Tentaculata. Platyctenids display a generally benthic lifestyle in contrast to most ctenophores being largely pelagic. Platyctenids display widely differi ...
are primarily protandrous, but asexual reproduction has also been observed in some species. * The flatworms '' Hymanella retenuova''. * '' Laevapex fuscus'', a
gastropod Gastropods (), commonly known as slugs and snails, belong to a large Taxonomy (biology), taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (). This class comprises snails and slugs from saltwater, freshwater, and fro ...
, is described as being functionally protandric. The
sperm Sperm (: sperm or sperms) is the male reproductive Cell (biology), cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Animals produce motile sperm ...
matures in late winter and early spring, the eggs mature in early summer, and copulation occurs only in June. This shows that males cannot reproduce until the females appear, thus why they are considered to be functionally protandric. * '' Speyeria mormonia'', the Mormon fritillary, is a butterfly species exhibiting protandry. In its case, functional protandry refers to the emergence of male adults 2–3 weeks before female adults. * Members of the shrimp genus '' Lysmata'' perform protandric simultaneous hermaphroditism where they become true hermaphrodites instead of females. During the "female phase", they have both male and female tissues in their gonads and produce both gametes.


Protogyny

Protogynous hermaphrodites are animals that are born female and at some point in their lifespan change sex to male. Protogyny is a more common form of sequential hermaphroditism in fish, especially when compared to protandry. As the animal ages, it shifts sex to become a male animal due to internal or external triggers, undergoing physiological and behavioral changes. In many fishes, female
fecundity Fecundity is defined in two ways; in human demography, it is the potential for reproduction of a recorded population as opposed to a sole organism, while in population biology, it is considered similar to fertility, the capability to produc ...
increases continuously with age, while in other species larger males have a selective advantage (such as in harems), so it is hypothesized that the mating system can determine whether it is more selectively advantageous to be a male or female when an organism's body is larger.


Protogynous examples

Protogyny is the most common form of hermaphroditism in fish in nature. About 75% of the 500 known sequentially hermaphroditic fish species are protogynous and often have polygynous mating systems. In these systems, large males use aggressive territorial defense to dominate female mating. This causes small males to have a severe reproductive disadvantage, which promotes strong selection of size-based protogyny. Therefore, if an individual is small, it is more reproductively advantageous to be female because they will still be able to reproduce, unlike small males. Common model organisms for this type of sequential hermaphroditism are wrasses. They are one of the largest families of coral reef fish and belong to the family Labridae. Wrasses are found around the world in all marine habitats and tend to bury themselves in sand at night or when they feel threatened. In wrasses, the larger of a mating pair is the male, while the smaller is the female. In most cases, females and immature males have a uniform color while the male has the terminal bicolored phase. Large males hold territories and try to pair spawn, while small to mid-size initial-phase males live with females and group spawn. In other words, both the initial- and terminal-phase males can breed, but they differ in the way they do it. In the
California sheephead The California sheephead (''Bodianus pulcher'', (Synonym (taxonomy), formerly ''Semicossyphus pulcher'') is a species of wrasse native to the eastern Pacific Ocean. Its range is from Monterey Bay, California, to the Gulf of California, Mexico. I ...
(''Semicossyphus pulcher''), a type of wrasse, when the female changes to male, the ovaries degenerate and spermatogenic crypts appear in the gonads. The general structure of the gonads remains ovarian after the transformation and the sperm is transported through a series of ducts on the periphery of the gonad and
oviduct The oviduct in vertebrates is the passageway from an ovary. In human females, this is more usually known as the fallopian tube. The eggs travel along the oviduct. These eggs will either be fertilized by spermatozoa to become a zygote, or will dege ...
. Here, sex change is age-dependent. For example, the California sheephead stays a female for four to six years before changing sex since all California sheephead are born female. Bluehead wrasses begin life as males or females, but females can change sex and function as males. Young females and males start with a dull initial-phase coloration before progressing into a brilliant terminal-phase coloration, which has a change in intensity of color, stripes, and bars. Terminal-phase coloration occurs when males become large enough to defend territory. Initial-phase males have larger testes than larger, terminal phase males, which enables the initial-phase males to produce a large amount of sperm. This strategy allows these males to compete with the larger territorial male. '' Botryllus schlosseri'', a colonial tunicate, is a protogynous hermaphrodite. In a colony, eggs are released about two days before the peak of sperm emission. Although self-fertilization is avoided and cross-fertilization favored by this strategy, self-fertilization is still possible. Self-fertilized eggs develop with a substantially higher frequency of anomalies during cleavage than cross-fertilized eggs (23% vs. 1.6%). Also a significantly lower percentage of larvae derived from self-fertilized eggs metamorphose, and the growth of the colonies derived from their metamorphosis is significantly lower. These findings suggest that self-fertilization gives rise to inbreeding depression associated with developmental deficits that are likely caused by expression of deleterious recessive mutations. Other examples of protogynous organisms include: * In the following
fish A fish (: fish or fishes) is an aquatic animal, aquatic, Anamniotes, anamniotic, gill-bearing vertebrate animal with swimming fish fin, fins and craniate, a hard skull, but lacking limb (anatomy), limbs with digit (anatomy), digits. Fish can ...
families:
Serranidae Serranidae is a large family (biology), family of fishes belonging to the order Perciformes. The family contains about 450 species in 65 genera, including the sea basses and the groupers (subfamily Epinephelinae). Although many species are small, ...
(groupers),
Sparidae Sparidae is a family of ray-finned fishes belonging to the order Spariformes, the seabreams and porgies, although they were traditionally classified in the order Perciformes. The over 150 species are found in shallow and deep marine waters in t ...
(porgies), Synbranchidae (swamp eels), Labridae (wrasses), Scaridae (parrotfishes), Pomacanthidae (angelfishes),
Gobiidae Gobiidae or gobies is a family (biology), family of bony fish in the order (biology), order Gobiiformes, one of the largest fish families comprising over 2,000 species in more than 200 genus, genera. Most of gobiid fish are relatively small, typ ...
(gobies), Lethrinidae (emperors), and possibly others. * The intertidal
isopod Isopoda is an Order (biology), order of crustaceans. Members of this group are called isopods and include both Aquatic animal, aquatic species and Terrestrial animal, terrestrial species such as woodlice. All have rigid, segmented exoskeletons ...
Gnorimosphaeroma oregonense. * Protogyny sometimes occurs in the frog '' Rana temporaria'', where older females will sometimes switch to being males.


Ultimate causes

The ultimate cause of a biological event determines how the event makes organisms better adapted to their environment, and thus why evolution by natural selection has produced that event. While a large number of ultimate causes of hermaphroditism have been proposed, the two causes most relevant to sequential hermaphroditism are the size-advantage model and protection against inbreeding.


Size-advantage model

The size-advantage model states that individuals of a given sex reproduce more effectively if they are a certain size or age. To create selection for sequential hermaphroditism, small individuals must have higher reproductive fitness as one sex and larger individuals must have higher reproductive fitness as the opposite sex. For example, eggs are larger than sperm, thus larger individuals are able to make more eggs, so individuals could maximize their reproductive potential by beginning life as male and then turning female upon achieving a certain size. In most ectotherms, body size and female fecundity are positively correlated. This supports the size-advantage model. Kazancioglu and Alonzo (2010) performed the first comparative analysis of sex change in Labridae. Their analysis supports the size-advantage model and suggest that sequential hermaphroditism is correlated to the size-advantage. They determined that dioecy was less likely to occur when the size advantage is stronger than other advantages. Warner suggests that selection for protandry may occur in populations where female fecundity is augmented with age and individuals mate randomly. Selection for protogyny may occur where there are traits in the population that depress male fecundity at early ages (territoriality, mate selection or inexperience) and when female fecundity is decreased with age, the latter seems to be rare in the field. An example of territoriality favoring protogyny occurs when there is a need to protect their habitat and being a large male is advantageous for this purpose. In the mating aspect, a large male has a higher chance of mating, while this has no effect on the female mating fitness. Thus, he suggests that female fecundity has more impact on sequential hermaphroditism than the age structures of the population. The size-advantage model predicts that sex change would only be absent if the relationship between size/age with reproductive potential is identical in both sexes. With this prediction one would assume that hermaphroditism is very common, but this is not the case. Sequential hermaphroditism is very rare and according to scientists this is due to some cost that decreases fitness in sex changers as opposed to those who do not change sex. Some of the hypotheses proposed for the dearth of hermaphrodites are the energetic cost of sex change, genetic and/or physiological barriers to sex change, and sex-specific mortality rates. In 2009, Kazanciglu and Alonzo found that dioecy was only favored when the cost of changing sex was very large. This indicates that the cost of sex change does not explain the rarity of sequential hermaphroditism by itself. The size-advantage model also explains under which mating systems protogyny or protandry would be more adaptive. In a haremic mating system, with one large male controlling access to numerous females for mating, this large male achieves greater reprodcutive success than a small female as he can fertilize numerous baches of eggs. So in this kind of haremic mating system (such as many wrasses), protogyny is the most adaptive strategy ("breed as a female when small, and then change to male when you're large and able to control a harem"). In a paired mating system (one male mates with one female, such as in clownfish or moray eels) the male can only fertilize one batch of eggs, whereas the female needs only a small male to fertilize her batch of eggs. so the larger she is, the more eggs she'll be able to produce and have fertilized. Therefore, in this kind of paired mating system, protandry is the most adaptive strategy ("breed as a male when small, and then change to female when you're larger").


Protection against inbreeding

Sequential hermaphroditism can also protect against inbreeding in populations of organisms that have low enough motility and/or are sparsely distributed enough that there is a considerable risk of siblings encountering each other after reaching sexual maturity, and interbreeding. If siblings are all the same or similar ages, and if they all begin life as one sex and then transition to the other sex at about the same age, then siblings are highly likely to be the same sex at any given time. This should dramatically reduce the likelihood of inbreeding. Both protandry and protogyny are known to help prevent inbreeding in plants, and many examples of sequential hermaphroditism attributable to inbreeding prevention have been identified in a wide variety of animals.


Proximate causes

The proximate cause of a biological event concerns the molecular and physiological mechanisms that produce the event. Many studies have focused on the proximate causes of sequential hermaphroditism, which may be caused by various hormonal and enzyme changes in organisms. The role of aromatase has been widely studied in this area. Aromatase is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that controls the
androgen An androgen (from Greek ''andr-'', the stem of the word meaning ) is any natural or synthetic steroid hormone that regulates the development and maintenance of male characteristics in vertebrates by binding to androgen receptors. This includes ...
/
estrogen Estrogen (also spelled oestrogen in British English; see spelling differences) is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three ...
ratio in animals by catalyzing the conversion of
testosterone Testosterone is the primary male sex hormone and androgen in Male, males. In humans, testosterone plays a key role in the development of Male reproductive system, male reproductive tissues such as testicles and prostate, as well as promoting se ...
into oestradiol, which is irreversible. It has been discovered that the aromatase pathway mediates sex change in both directions in organisms. Many studies also involve understanding the effect of aromatase inhibitors on sex change. One such study was performed by Kobayashi et al. In their study they tested the role of estrogens in male three-spot wrasses (''Halichoeres trimaculatus''). They discovered that fish treated with aromatase inhibitors showed decreased gonodal weight, plasma estrogen level and spermatogonial proliferation in the testis as well as increased androgen levels. Their results suggest that estrogens are important in the regulation of
spermatogenesis Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testicle. This process starts with the Mitosis, mitotic division of the stem cells located close to the basement membrane of ...
in this protogynous hermaphrodite. Previous studies have also investigated sex reversal mechanisms in
teleost Teleostei (; Ancient Greek, Greek ''teleios'' "complete" + ''osteon'' "bone"), members of which are known as teleosts (), is, by far, the largest group of ray-finned fishes (class Actinopterygii), with 96% of all neontology, extant species of f ...
fish. During sex reversal, their whole gonads including the germinal epithelium undergoes significant changes, remodeling, and reformation. One study on the teleost '' Synbranchus marmoratus'' found that metalloproteinases (MMPs) were involved in gonadal remodeling. In this process, the ovaries degenerated and were slowly replaced by the germinal male tissue. In particular, the action of MMPs induced significant changes in the interstitial gonadal tissue, allowing for reorganization of germinal epithelial tissue. The study also found that sex steroids help in the sex reversal process by being synthesized as Leydig cells replicate and differentiate. Thus, the synthesis of sex steroids coincides with gonadal remodeling, which is triggered by MMPs produced by germinal epithelial tissue. These results suggests that MMPs and changes in steroid levels play a large role in sequential hermaphroditism in teleosts.


Genetic consequences

Sequential hermaphrodites almost always have a sex ratio biased towards the birth sex, and consequently experience significantly more reproductive success after switching sexes. According to the population genetics theory, this should decrease
genetic diversity Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species. It ranges widely, from the number of species to differences within species, and can be correlated to the span of survival for a species. It is d ...
and
effective population size The effective population size (''N'e'') is the size of an idealised population that would experience the same rate of genetic drift as the real population. Idealised populations are those following simple one- locus models that comply with ass ...
(Ne). However, a study of two ecologically similar santer sea bream ( gonochoric) and slinger sea bream (protogynous) in South African waters found that genetic diversities were similar in the two species, and while Ne was lower in the instant for the sex-changer, they were similar over a relatively short time horizon. The ability of these organisms to change biological sex has allowed for better reproductive success based on the ability for certain genes to pass down more easily from generation to generation. The change in sex also allows for organisms to reproduce if no individuals of the opposite sex are already present.


Botany

Sequential hermaphroditism in plants is the process in which a plant changes its sex during its lifetime. Sequential hermaphroditism in plants is very rare. There are less than 0.1% of recorded cases in which plant species entirely change their sex. The Patchy Environment Model and Size Dependent Sex Allocation are the two environmental factors which drive sequential hermaphroditism in plants. The Patchy Environment Model states that plants maximize the use of their resources by changing their sex. For example, if a plant benefits more from the resources of a given environment in a certain sex, it will change to that sex. Furthermore, Size Dependent Sex Allocation outlines that in sequential hermaphroditic plants, it is preferable to change sexes in a way that maximizes their overall fitness compared to their size over time. Similar to maximizing the use of resources, if the combination of size and fitness for a certain sex is more beneficial, the plant will change to that sex. Evolutionarily, sequential
hermaphrodite A hermaphrodite () is a sexually reproducing organism that produces both male and female gametes. Animal species in which individuals are either male or female are gonochoric, which is the opposite of hermaphroditic. The individuals of many ...
s emerged as certain species obtained a reproductive advantage by changing their sex.


Arisaema

'' Arisaema triphyllum'' (Jack in the pulpit) is a plant species which is commonly cited as exercising sequential hermaphroditism. As ''A. triphyllum'' grows, it develops from a nonsexual juvenile plant, to a young all-male plant, to a male-and-female plant, to an all-female plant. This means that ''A. triphyllum'' is changing its sex from male to female over the course of its lifetime as its size increases, showcasing Size Dependent Sex Allocation. Another example is '' Arisaema dracontium'' or the green dragon, which can change its sex on a yearly basis. The sex of ''A. dracontium'' is also dependent on size: the smaller flowers are male while the larger flowers are both male and female. Typically in ''Arisaema'' species, small flowers only contain stamens, meaning they are males. Larger flowers can contain both stamen and pistils or only pistils, meaning they can be either hermaphrodites or strictly female.


Striped maple (''Acer pensylvanicum'')

Striped maple trees ('' Acer pensylvanicum'') have been shown to change sex over a period of several years, and are sequential hermaphrodites. When branches were removed from striped maple trees they changed to female or to female and male as a response to the damage. Sickness will also trigger a sex change to either female or female and male.


Dichogamy in flowering plants

In the context of the sexuality of flowering plants (angiosperms), there are two forms of dichogamy: ''protogyny''—female function precedes male function—and ''protandry''—male function precedes female function. Examples include in
Asteraceae Asteraceae () is a large family (biology), family of flowering plants that consists of over 32,000 known species in over 1,900 genera within the Order (biology), order Asterales. The number of species in Asteraceae is rivaled only by the Orchi ...
, bisexual tubular (disks) florets are usually protandrous. Whereas in ''
Acacia ''Acacia'', commonly known as wattles or acacias, is a genus of about of shrubs and trees in the subfamily Mimosoideae of the pea family Fabaceae. Initially, it comprised a group of plant species native to Africa, South America, and Austral ...
'' and ''
Banksia ''Banksia'' is a genus of around 170 species of flowering plants in the family Proteaceae. These Australian wildflowers and popular garden plants are easily recognised by their characteristic flower spikes, and woody fruiting "cones" and head ...
'' flowers are protogynous, with the style of the female flower elongating, then later in the male phase the anthers shedding pollen.


Evolution

Historically, dichogamy has been regarded as a mechanism for reducing
inbreeding Inbreeding is the production of offspring from the mating or breeding of individuals or organisms that are closely genetic distance, related genetically. By analogy, the term is used in human reproduction, but more commonly refers to the genet ...
. However, a survey of the angiosperms found that self-incompatible (SI) plants, which are incapable of inbreeding, were as likely to be dichogamous as were self-compatible (SC) plants. This finding led to a reinterpretation of dichogamy as a more general mechanism for reducing the impact of
pollen Pollen is a powdery substance produced by most types of flowers of seed plants for the purpose of sexual reproduction. It consists of pollen grains (highly reduced Gametophyte#Heterospory, microgametophytes), which produce male gametes (sperm ...
-
pistil Gynoecium (; ; : gynoecia) is most commonly used as a collective term for the parts of a flower that produce ovules and ultimately develop into the fruit and seeds. The gynoecium is the innermost whorl (botany), whorl of a flower; it consists ...
interference on pollen import and export. Unlike the inbreeding avoidance hypothesis, which focused on female function, this interference-avoidance hypothesis considers both reproductive functions.


Mechanism

In many hermaphroditic plant species, the close physical proximity of anthers and stigma makes interference unavoidable, either within a
flower Flowers, also known as blooms and blossoms, are the reproductive structures of flowering plants ( angiosperms). Typically, they are structured in four circular levels, called whorls, around the end of a stalk. These whorls include: calyx, m ...
or between flowers on an
inflorescence In botany, an inflorescence is a group or cluster of flowers arranged on a plant's Plant stem, stem that is composed of a main branch or a system of branches. An inflorescence is categorized on the basis of the arrangement of flowers on a mai ...
. Within-flower interference, which occurs when either the pistil interrupts pollen removal or the anthers prevent pollen deposition, can result in autonomous or facilitated self-pollination. Between-flower interference results from similar mechanisms, except that the interfering structures occur on different flowers within the same inflorescence and it requires
pollinator A pollinator is an animal that moves pollen from the male anther of a flower to the female carpel, stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains. Insects are ...
activity. This results in geitonogamous pollination, the transfer of pollen between flowers of the same individual. In contrast to within-flower interference, geitonogamy necessarily involves the same processes as outcrossing: pollinator attraction, reward provisioning, and pollen removal. Therefore, between-flower interference not only carries the cost of self-fertilization (
inbreeding depression Inbreeding depression is the reduced biological fitness caused by loss of genetic diversity as a consequence of inbreeding, the breeding of individuals closely related genetically. This loss of genetic diversity results from small population siz ...
), but also reduces the amount of pollen available for export (so-called "pollen discounting"). Because pollen discounting diminishes outcross siring success, interference avoidance may be an important evolutionary force in floral biology. Dichogamy may reduce between-flower interference by reducing or eliminating the temporal overlap between stigma and anthers within an inflorescence. Large inflorescences attract more pollinators, potentially enhancing reproductive success by increasing pollen import and export. However, large inflorescences also increase the opportunities for both geitonogamy and pollen discounting, so that the opportunity for between-flower interference increases with inflorescence size. Consequently, the evolution of floral display size may represent a compromise between maximizing pollinator visitation and minimizing geitonogamy and pollen discounting (Barrett et al., 1994).


Protandry

Protandry may be particularly relevant to this compromise, because it often results in an inflorescence structure with female phase flowers positioned below male phase flowers. Given the tendency of many insect pollinators to forage upwards through inflorescences, protandry may enhance pollen export by reducing between-flower interference. Furthermore, this enhanced pollen export should increase as floral display size increases, because between-flower interference should increase with floral display size. These effects of protandry on between-flower interference may decouple the benefits of large inflorescences from the consequences of geitonogamy and pollen discounting. Such a decoupling would provide a significant reproductive advantage through increased pollinator visitation and siring success.


Advantages

It has been demonstrated experimentally that dichogamy both reduced rates of self-fertilization and enhanced outcross siring success through reductions in geitonogamy and pollen discounting, respectively. The influence of inflorescence size on this siring advantage shows bimodal distribution, with increased siring success with both small and large display sizes. The duration of stigmatic receptivity plays a key role in regulating the isolation of the male and female stages in dichogamous plants, and stigmatic receptivity can be influenced by both temperature and humidity. In the moth pollinated orchid, ''Satyrium longicauda'', protandry tends to promote male mating success.


See also

*
Plant sexuality Plant reproductive morphology is the study of the physical form and structure (the morphology) of those parts of plants directly or indirectly concerned with sexual reproduction. Among all living organisms, flowers, which are the reproductive ...
* Sequential hermaphrodite section in
Hermaphrodite A hermaphrodite () is a sexually reproducing organism that produces both male and female gametes. Animal species in which individuals are either male or female are gonochoric, which is the opposite of hermaphroditic. The individuals of many ...


References

{{Sex (biology) Reproduction Pollination Sexual system