HOME

TheInfoList



OR:

During every moment of an organism's life, sensory information is being taken in by sensory receptors and processed by the
nervous system In Biology, biology, the nervous system is the Complex system, highly complex part of an animal that coordinates its Behavior, actions and Sense, sensory information by transmitting action potential, signals to and from different parts of its ...
. Sensory information is stored in sensory memory just long enough to be transferred to
short-term memory Short-term memory (or "primary" or "active memory") is the capacity for holding a small amount of information in an active, readily available state for a short interval. For example, short-term memory holds a phone number that has just been recit ...
. Humans have five traditional senses: sight, hearing, taste, smell, touch. Sensory memory (SM) allows individuals to retain impressions of sensory information after the original stimulus has ceased. A common demonstration of SM is a child's ability to write letters and make circles by twirling a sparkler at night. When the sparkler is spun fast enough, it appears to leave a trail which forms a continuous image. This "light trail" is the image that is represented in the visual sensory store known as
iconic memory Iconic memory is the visual sensory memory register pertaining to the visual domain and a fast-decaying store of visual information. It is a component of the visual memory system which also includes visual short-term memory (VSTM) and long-term me ...
. The other two types of SM that have been most extensively studied are
echoic memory Echoic memory is the sensory memory that registers specific to auditory information (sounds). Once an auditory stimulus is heard, it is stored in memory so that it can be processed and understood. Unlike most visual memory, where a person can cho ...
, and
haptic memory Haptic memory is the form of sensory memory specific to touch stimuli. Haptic memory is used regularly when assessing the necessary forces for gripping and interacting with familiar objects. It may also influence one's interactions with novel obj ...
; however, it is reasonable to assume that each physiological sense has a corresponding memory store. Children for example have been shown to remember specific "sweet" tastes during incidental learning trials but the nature of this gustatory store is still unclear. However, sensory memories might be related to a region of the
thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all direction ...
, which serves as a source of signals encoding past experiences in the
neocortex The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, ...
.


Characteristics

SM is considered to be outside of cognitive control and is instead an automatic response. The information represented in SM is the "raw data" which provides a snapshot of a person's overall sensory experience. Common features between each
sensory modality Stimulus modality, also called sensory modality, is one aspect of a stimulus or what is perceived after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light ...
have been identified; however, as experimental techniques advance, exceptions and additions to these general characteristics will surely evolve. The auditory store, echoic memory, for example, has been shown to have a temporal characteristic in which the timing and
tempo In musical terminology, tempo ( Italian, 'time'; plural ''tempos'', or ''tempi'' from the Italian plural) is the speed or pace of a given piece. In classical music, tempo is typically indicated with an instruction at the start of a piece (ofte ...
of a presented stimulus affects transfer into more stable forms of memory. Four common features have been identified for all forms of SM: #The formation of a SM trace is only weakly dependent on attention to the stimulus. #The information stored in SM is modality specific. This means for example, that echoic memory is for the exclusive storage of auditory information, and haptic memory is for the exclusive storage of tactile information. #Each SM store represents an immense amount of detail resulting in very high resolution of information. #Each SM store is very brief and lasts a very short period of time. Once the SM trace has decayed or is replaced by a new memory, the information stored is no longer accessible and is ultimately lost. All SM stores have slightly different durations which is discussed in more detail on their respective pages. It is widely accepted that all forms of SM are very brief in duration; however, the approximated duration of each memory store is not static. Iconic memory, for example, holds visual information for approximately 250 milliseconds. The SM is made up of spatial or categorical stores of different kinds of information, each subject to different rates of information processing and decay. The visual sensory store has a relatively high capacity, with the ability to hold up to 12 items. Genetics also play a role in SM capacity; mutations to the brain-derived neurotrophic factor (BDNF), a nerve growth factor, and N-methyl-D-aspartate (NMDA) receptors, responsible for
synaptic plasticity In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circui ...
, decrease iconic and echoic memory capacities respectively.


Types


Iconic memory

The mental representation of the visual stimuli are referred to as icons (fleeting images.) Iconic memory was the first sensory store to be investigated with experiments dating back as far as 1740. One of the earliest investigations into this phenomenon was by Ján Andrej Segner, a German physicist and mathematician. In his experiment, Segner attached a glowing coal to a cart wheel and rotated the wheel at increasing speed until an unbroken circle of light was perceived by the observer. He calculated that the glowing coal needed to make a complete circle in under 100ms to achieve this effect, which he determined was the duration of this visual memory store. In 1960, George Sperling conducted a study where participants were shown a set of letters for a brief amount of time and were asked to recall the letters they were shown afterwards. Participants were less likely to recall more letters when asked about the whole group of letters, but recalled more when asked about specific subgroups of the whole. These findings suggest that iconic memory in humans has a large capacity, but decays very rapidly. Another study set out to test the idea that visual sensory memory consists of coarse-grained and fine-grained memory traces using a mathematical model to quantify each. The study suggested that the dual-trace model of visual memory out performed single-trace models.


Echoic memory

Echoic memory represents SM for the auditory sense of
hearing Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is audit ...
. Auditory information travels as sound waves which are sensed by hair cells in the ears. Information is sent to and processed in the
temporal lobe The temporal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The temporal lobe is located beneath the lateral fissure on both cerebral hemispheres of the mammalian brain. The temporal lobe is involved in proc ...
. The echoic sensory store holds information for 2–3 seconds to allow for proper processing. The first studies of echoic memory came shortly after Sperling investigated iconic memory using an adapted partial report paradigm. Today, characteristics of echoic memory have been found mainly using a mismatch negativity (MMN) paradigm which utilizes EEG and
MEG Meg is a feminine given name, often a short form of Megatron, Megan, Megumi (Japanese), etc. It may refer to: People *Meg (singer), a Japanese singer *Meg Cabot (born 1967), American author of romantic and paranormal fiction *Meg Burton Cahill ( ...
recordings. MMN has been used to identify some of the key roles of echoic memory such as change detection and language acquisition. Change detection, or the ability to detect an unusual or possibly dangerous change in the environment independent of attention, is key to the survival of an organism. One study focusing on echoic sensory changes suggested that when a sound is presented to a subject, it is enough to shape an echoic memory trace that can be compared to a physically different sound. Change-related cortical responses were detected in the superior temporal gyrus using EEG. With regards to language, a characteristic of children who begin speaking late in development is reduced duration of echoic memory. In short, "Echoic memory is a fast-decaying store of auditory information." In the case of damage to or lesions developing on the frontal lobe, parietal lobe, or hippocampus, echoic memory will likely be shortened and/or have a slower reaction time.


Haptic memory

Haptic memory represents SM for the tactile sense of
touch In physiology, the somatosensory system is the network of neural structures in the brain and body that produce the perception of touch ( haptic perception), as well as temperature ( thermoception), body position ( proprioception), and pain. It ...
. Sensory receptors all over the body detect sensations such as pressure, itching, and pain. Information from receptors travel through
afferent neurons Sensory neurons, also known as afferent neurons, are neurons in the nervous system, that convert a specific type of stimulus, via their receptors, into action potentials or graded potentials. This process is called sensory transduction. T ...
in the spinal cord to the postcentral gyrus of the
parietal lobe The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus. The parietal lobe integrates sensory informa ...
in the brain. This pathway comprises the somatosensory system. Evidence for haptic memory has only recently been identified resulting in a small body of research regarding its role, capacity, and duration. Already however, fMRI studies have revealed that specific neurons in the
prefrontal cortex In mammalian brain anatomy, the prefrontal cortex (PFC) covers the front part of the frontal lobe of the cerebral cortex. The PFC contains the Brodmann areas BA8, BA9, BA10, BA11, BA12, BA13, BA14, BA24, BA25, BA32, BA44, BA45, BA ...
are involved in both SM, and motor preparation which provides a crucial link to haptic memory and its role in motor responses.


Proprioceptive memory

Patients undergoing regional anesthesia can have incorrect, "phantom" perception of their limb positions during a procedure. A longstanding neurological explanation of this effect was that, without incoming signals from
proprioceptive Proprioception ( ), also referred to as kinaesthesia (or kinesthesia), is the sense of self-movement, force, and body position. It is sometimes described as the "sixth sense". Proprioception is mediated by proprioceptors, mechanosensory neuron ...
neurons, the limb perception system presented to consciousness a default, slightly flexed position, considered to be a universal, inborn "body schema". However, more deliberate experimentation, varying patient limb position prior to anesthesia, has established that there is a proprioceptive memory store, which informs these perceptions. More task-oriented experimentation with limb position—asking subjects to return their arm to a remembered position—has revealed a rapidly decaying, high-precision memory available for two to four seconds, which is theorized to be the proprioceptive equivalent of iconic memory and echoic memory. A somewhat different theory of proprioceptive memory has been put forward as an explanation of phantom limb phenomena. The hypothesis states that we remember limb positions which are used in common tasks, such driving, riding a bike, eating with a fork, etc. The formation of a "proprioceptive memory bank" over the course of our lives contributes to our proficiency with these tasks, and the ease with which they are performed. Memories of specific limb positions can also be associated with expected sensations, including pain. In the theory as described by Anderson-Barnes et al., these memories aid us to rapidly ascribe location and cause when pain does occur, especially pain caused by an overextended joint; and these memories also help us rapidly choose a motion which will relieve the pain. However, in the case of amputation, the remembered pain is being continually or intermittently ascribed to the perceived limb position, often because the most recent limb position prior to amputation was in fact painful. This pain, and the role of proprioceptive memory in perpetuating it, has been compared to
tinnitus Tinnitus is the perception of sound when no corresponding external sound is present. Nearly everyone experiences a faint "normal tinnitus" in a completely quiet room; but it is of concern only if it is bothersome, interferes with normal hearin ...
and the role of echoic memory in its etiology.


Relationship with other memory systems

SM is ''not'' involved in higher cognitive functions such as
consolidation Consolidation may refer to: In science and technology * Consolidation (computing), the act of linkage editing in computing * Memory consolidation, the process in the brain by which recent memories are crystallised into long-term memory * Pulmon ...
of memory traces or comparison of information. Likewise, the capacity and duration of SM cannot be influenced by top-down control; a person cannot consciously think or choose what information is stored in SM, or how long it will be stored for. The role of SM is to provide a detailed representation of our entire sensory experience for which relevant pieces of information can be extracted by short-term memory (STM) and processed by
working memory Working memory is a cognitive system with a limited capacity that can hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term memory, ...
(WM). STM is capable of storing information for 10–15 seconds without rehearsal while working memory actively processes, manipulates, and controls the information. Information from STM can then be consolidated into