HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a semiprime is a
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
that is the product of exactly two
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s. The two primes in the product may equal each other, so the semiprimes include the
squares In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes, since they include two primes, or second numbers, by analogy with how "prime" means "first". Alternatively non-prime semiprimes are called almost-prime numbers, specifically the "2-almost-prime" biprime and "3-almost-prime" triprime


Examples and variations

The semiprimes less than 100 are: Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes: The semiprimes are the case k=2 of the k- almost primes, numbers with exactly k prime factors. However some sources use "semiprime" to refer to a larger set of numbers, the numbers with at most two prime factors (including unit (1), primes, and semiprimes). These are:


Formula for number of semiprimes

A semiprime counting formula was discovered by E. Noel and G. Panos in 2005. Let \pi_2(n) denote the number of semiprimes less than or equal to ''n''. Then \pi_2(n) = \sum_^ \left pi\left(\frac\right) - k + 1 \right/math> where \pi(x) is the
prime-counting function In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number . It is denoted by (unrelated to the number ). A symmetric variant seen sometimes is , which is equal ...
and p_k denotes the ''k''th prime.


Properties

Semiprime numbers have no
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime numb ...
s as factors other than themselves. For example, the number 26 is semiprime and its only factors are 1, 2, 13, and 26, of which only 26 is composite. For a squarefree semiprime n=pq (with p\ne q) the value of
Euler's totient function In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In ot ...
\varphi(n) (the number of positive integers less than or equal to n that are
relatively prime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
to n) takes the simple form \varphi(n)=(p-1)(q-1)=n-(p+q)+1. This calculation is an important part of the application of semiprimes in the
RSA cryptosystem The RSA (Rivest–Shamir–Adleman) cryptosystem is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly ...
. For a square semiprime n=p^2, the formula is again simple: \varphi(n)=p(p-1)=n-p.


Applications

Semiprimes are highly useful in the area of
cryptography Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
and
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
, most notably in
public key cryptography Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic al ...
, where they are used by RSA and
pseudorandom number generator A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random number generation, random n ...
s such as Blum Blum Shub. These methods rely on the fact that finding two large primes and multiplying them together (resulting in a semiprime) is computationally simple, whereas finding the original factors appears to be difficult. In the RSA Factoring Challenge,
RSA Security RSA Security LLC, formerly RSA Security, Inc. and trade name RSA, is an American computer security, computer and network security company with a focus on encryption and decryption standards. RSA was named after the initials of its co-founders, ...
offered prizes for the factoring of specific large semiprimes and several prizes were awarded. The original RSA Factoring Challenge was issued in 1991, and was replaced in 2001 by the New RSA Factoring Challenge, which was later withdrawn in 2007. In 1974 the
Arecibo message The Arecibo message is an interstellar radio message carrying basic information about humanity and Earth that was sent to the globular cluster Messier 13 in 1974. It was meant as a demonstration of human technological achievement, rather than ...
was sent with a radio signal aimed at a
star cluster A star cluster is a group of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters, tight groups of ten thousand to millions of old stars which are gravitationally bound; and open cluster ...
. It consisted of 1679 binary digits intended to be interpreted as a 23 \times 73
bitmap In computing, a bitmap (also called raster) graphic is an image formed from rows of different colored pixels. A GIF is an example of a graphics image file that uses a bitmap. As a noun, the term "bitmap" is very often used to refer to a partic ...
image. The number 1679=23\cdot 73 was chosen because it is a semiprime and therefore can be arranged into a rectangular image in only two distinct ways (23 rows and 73 columns, or 73 rows and 23 columns).


See also

*
Chen's theorem In number theory, Chen's theorem states that every sufficiently large parity (mathematics), even number can be written as the sum of either two prime number, primes, or a prime and a semiprime (the product of two primes). It is a weakened form o ...
*
Sphenic number In number theory, a sphenic number (from , 'wedge') is a positive integer that is the product of three distinct prime numbers. Because there are infinitely many prime numbers, there are also infinitely many sphenic numbers. Definition A sphenic ...
, a product of three distinct primes * Parity problem (sieve theory)


References


External links

* {{Classes of natural numbers Integer sequences Prime numbers Theory of cryptography