The Schrödinger equation is a
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.
The function is often thought of as an "unknown" that solves the equation, similar to ho ...
that governs the
wave function
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
of a non-relativistic quantum-mechanical system.
Its discovery was a significant landmark in the development of
quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
. It is named after
Erwin Schrödinger
Erwin Rudolf Josef Alexander Schrödinger ( ; ; 12 August 1887 – 4 January 1961), sometimes written as or , was an Austrian-Irish theoretical physicist who developed fundamental results in quantum field theory, quantum theory. In particul ...
, an Austrian physicist, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his
Nobel Prize in Physics
The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
in 1933.
[
]
Conceptually, the Schrödinger equation is the quantum counterpart of
Newton's second law
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:
# A body re ...
in
classical mechanics
Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of the
wave function
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
, the quantum-mechanical characterization of an isolated physical system. The equation was postulated by Schrödinger based on a postulate of
Louis de Broglie
Louis Victor Pierre Raymond, 7th Duc de Broglie (15 August 1892 – 19 March 1987) was a French theoretical physicist and aristocrat known for his contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of elec ...
that all matter has an associated
matter wave
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave-like behavior. For example, a beam of electrons can be diffract ...
. The equation predicted bound states of the atom in agreement with experimental observations.
The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions. Other formulations of quantum mechanics include
matrix mechanics, introduced by
Werner Heisenberg
Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II.
He pub ...
, and the
path integral formulation
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or ...
, developed chiefly by
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
. When these approaches are compared, the use of the Schrödinger equation is sometimes called "wave mechanics".
The equation given by Schrödinger is nonrelativistic because it contains a first derivative in time and a second derivative in space, and therefore space and time are not on equal footing.
Paul Dirac
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
incorporated
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
and quantum mechanics into a
single formulation that simplifies to the Schrödinger equation in the non-relativistic limit. This is the
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
, which contains a single derivative in both space and time. Another
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.
The function is often thought of as an "unknown" that solves the equation, similar to ho ...
, the
Klein–Gordon equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is named after Oskar Klein and Walter Gordon. It is second-order i ...
, led to a problem with probability density even though it was a
relativistic wave equation. The probability density could be negative, which is physically unviable. This was fixed by Dirac by taking the so-called square root of the Klein–Gordon operator and in turn introducing
Dirac matrices
In mathematical physics, the gamma matrices, \ \left\\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra \ \mathr ...
. In a modern context, the Klein–Gordon equation describes
spin-less particles, while the Dirac equation describes
spin-1/2
In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of . The spin number describes how many symmetrical facets a particle has in one f ...
particles.
Definition
Preliminaries
Introductory courses on physics or chemistry typically introduce the Schrödinger equation in a way that can be appreciated knowing only the concepts and notations of basic
calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
Originally called infinitesimal calculus or "the ...
, particularly
derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
s with respect to space and time. A special case of the Schrödinger equation that admits a statement in those terms is the position-space Schrödinger equation for a single nonrelativistic particle in one dimension:
Here,
is a wave function, a function that assigns a
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
to each point
at each time
. The parameter
is the mass of the particle, and
is the ''
potential
Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
'' that represents the environment in which the particle exists.
The constant
is the
imaginary unit
The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex num ...
, and
is the reduced
Planck constant
The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
, which has units of
action (
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
multiplied by time).

Broadening beyond this simple case, the
mathematical formulation of quantum mechanics
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, whic ...
developed by
Paul Dirac
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
,
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time.
Hilbert discovered and developed a broad range of fundamental idea ...
,
John von Neumann
John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
, and
Hermann Weyl
Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
defines the state of a quantum mechanical system to be a vector
belonging to a
separable complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
. This vector is postulated to be normalized under the Hilbert space's inner product, that is, in
Dirac notation
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and Theoretical physics, theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for bot ...
it obeys
. The exact nature of this Hilbert space is dependent on the system – for example, for describing position and momentum the Hilbert space is the space of
square-integrable function
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value ...
s
, while the Hilbert space for the
spin of a single proton is the two-dimensional
complex vector space with the usual inner product.
Physical quantities of interest – position, momentum, energy, spin – are represented by
observable
In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum ...
s, which are
self-adjoint operator
In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
s acting on the Hilbert space. A wave function can be an
eigenvector
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by ...
of an observable, in which case it is called an
eigenstate
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system re ...
, and the associated
eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
corresponds to the value of the observable in that eigenstate. More generally, a quantum state will be a linear combination of the eigenstates, known as a
quantum superposition
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödi ...
. When an observable is measured, the result will be one of its eigenvalues with probability given by the
Born rule
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a ...
: in the simplest case the eigenvalue
is non-degenerate and the probability is given by
, where
is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by
, where
is the
projector
A projector or image projector is an optical device that projects an image (or moving images) onto a surface, commonly a projection screen. Most projectors create an image by shining a light through a small transparent lens, but some newer type ...
onto its associated eigenspace.
A momentum eigenstate would be a perfectly monochromatic wave of infinite extent, which is not square-integrable. Likewise a
position eigenstate would be a
Dirac delta distribution
In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line ...
, not square-integrable and technically not a function at all. Consequently, neither can belong to the particle's Hilbert space. Physicists sometimes regard these eigenstates, composed of elements outside the Hilbert space, as "
generalized eigenvectors
In linear algebra, a generalized eigenvector of an n\times n matrix A is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector.
Let V be an n-dimensional vector space and let A be the matrix r ...
". These are used for calculational convenience and do not represent physical states.
Thus, a position-space wave function
as used above can be written as the inner product of a time-dependent state vector
with unphysical but convenient "position eigenstates"
:
Time-dependent equation

The form of the Schrödinger equation depends on the physical situation. The most general form is the time-dependent Schrödinger equation, which gives a description of a system evolving with time:
where
is time,
is the state vector of the quantum system (
being the Greek letter
psi
Psi, PSI or Ψ may refer to:
Alphabetic letters
* Psi (Greek) (Ψ or ψ), the twenty-third letter of the Greek alphabet
* Psi (Cyrillic), letter of the early Cyrillic alphabet, adopted from Greek
Arts and entertainment
* "Psi" as an abbreviat ...
), and
is an observable, the
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
operator.
The term "Schrödinger equation" can refer to both the general equation, or the specific nonrelativistic version. The general equation is indeed quite general, used throughout quantum mechanics, for everything from the
Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
to
quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, by plugging in diverse expressions for the Hamiltonian. The specific nonrelativistic version is an approximation that yields accurate results in many situations, but only to a certain extent (see
relativistic quantum mechanics and
relativistic quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of suba ...
).
To apply the Schrödinger equation, write down the
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
for the system, accounting for the
kinetic and
potential
Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
energies of the particles constituting the system, then insert it into the Schrödinger equation. The resulting partial
differential equation is solved for the wave function, which contains information about the system. In practice, the square of the absolute value of the wave function at each point is taken to define a
probability density function
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
.
For example, given a wave function in position space
as above, we have
Time-independent equation
The time-dependent Schrödinger equation described above predicts that wave functions can form
standing wave
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect t ...
s, called
stationary state
A stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector, energy eigenstate, ene ...
s. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for ''any'' state. Stationary states can also be described by a simpler form of the Schrödinger equation, the time-independent Schrödinger equation.
where
is the energy of the system.
This is only used when the
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
itself is not dependent on time explicitly. However, even in this case the total wave function is dependent on time as explained in the section on
linearity
In mathematics, the term ''linear'' is used in two distinct senses for two different properties:
* linearity of a '' function'' (or '' mapping'');
* linearity of a '' polynomial''.
An example of a linear function is the function defined by f(x) ...
below. In the language of
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matrix (mathemat ...
, this equation is an
eigenvalue equation
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a c ...
. Therefore, the wave function is an
eigenfunction
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
of the Hamiltonian operator with corresponding eigenvalue(s)
.
Properties
Linearity
The Schrödinger equation is a
linear differential equation
In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form
a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x)
wher ...
, meaning that if two state vectors
and
are solutions, then so is any
linear combination
In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
of the two state vectors where and are any complex numbers.
Moreover, the sum can be extended for any number of state vectors. This property allows
superpositions of quantum states to be solutions of the Schrödinger equation. Even more generally, it holds that a general solution to the Schrödinger equation can be found by taking a weighted sum over a basis of states. A choice often employed is the basis of
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
eigenstates, which are solutions of the time-independent Schrödinger equation. In this basis, a time-dependent state vector
can be written as the linear combination
where
are complex numbers and the vectors
are solutions of the time-independent equation
.
Unitarity
Holding the Hamiltonian
constant, the Schrödinger equation has the solution
The operator
is known as the time-evolution operator, and it is
unitary
Unitary may refer to:
Mathematics
* Unitary divisor
* Unitary element
* Unitary group
* Unitary matrix
* Unitary morphism
* Unitary operator
* Unitary transformation
* Unitary representation
* Unitarity (physics)
* ''E''-unitary inverse semigr ...
: it preserves the inner product between vectors in the Hilbert space.
Unitarity is a general feature of time evolution under the Schrödinger equation. If the initial state is
, then the state at a later time
will be given by
for some unitary operator
. Conversely, suppose that
is a continuous family of unitary operators parameterized by
.
Without loss of generality
''Without loss of generality'' (often abbreviated to WOLOG, WLOG or w.l.o.g.; less commonly stated as ''without any loss of generality'' or ''with no loss of generality'') is a frequently used expression in mathematics. The term is used to indicat ...
, the parameterization can be chosen so that
is the identity operator and that
for any
. Then
depends upon the parameter
in such a way that
for some self-adjoint operator
, called the ''generator'' of the family
. A Hamiltonian is just such a generator (up to the factor of the Planck constant that would be set to 1 in
natural units
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light may be set to 1, and it may then be omitted, equa ...
).
To see that the generator is Hermitian, note that with
, we have
so
is unitary only if, to first order, its derivative is Hermitian.
Changes of basis
The Schrödinger equation is often presented using quantities varying as functions of position, but as a vector-operator equation it has a valid representation in any arbitrary complete basis of
kets in
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
. As mentioned above, "bases" that lie outside the physical Hilbert space are also employed for calculational purposes. This is illustrated by the ''position-space'' and ''momentum-space'' Schrödinger equations for a nonrelativistic, spinless particle.
The Hilbert space for such a particle is the space of complex square-integrable functions on three-dimensional Euclidean space, and its Hamiltonian is the sum of a kinetic-energy term that is quadratic in the momentum operator and a potential-energy term:
Writing
for a three-dimensional position vector and
for a three-dimensional momentum vector, the position-space Schrödinger equation is
The momentum-space counterpart involves the
Fourier transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
s of the wave function and the potential:
The functions
and
are derived from
by
where
and
do not belong to the Hilbert space itself, but have well-defined inner products with all elements of that space.
When restricted from three dimensions to one, the position-space equation is just the first form of the Schrödinger equation given
above. The relation between position and momentum in quantum mechanics can be appreciated in a single dimension. In
canonical quantization, the classical variables
and
are promoted to self-adjoint operators
and
that satisfy the
canonical commutation relation
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,
hat x,\hat p ...
This implies that
so the action of the momentum operator
in the position-space representation is
. Thus,
becomes a
second derivative
In calculus, the second derivative, or the second-order derivative, of a function is the derivative of the derivative of . Informally, the second derivative can be phrased as "the rate of change of the rate of change"; for example, the secon ...
, and in three dimensions, the second derivative becomes the
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
.
The canonical commutation relation also implies that the position and momentum operators are Fourier conjugates of each other. Consequently, functions originally defined in terms of their position dependence can be converted to functions of momentum using the Fourier transform.
In
solid-state physics
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state phy ...
, the Schrödinger equation is often written for functions of momentum, as
Bloch's theorem ensures the periodic crystal lattice potential couples
with
for only discrete
reciprocal lattice
Reciprocal lattice is a concept associated with solids with translational symmetry which plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid. It emerges from the Fourier tran ...
vectors
. This makes it convenient to solve the momentum-space Schrödinger equation at each
point in the
Brillouin zone
In mathematics and solid state physics, the first Brillouin zone (named after Léon Brillouin) is a uniquely defined primitive cell in reciprocal space
Reciprocal lattice is a concept associated with solids with translational symmetry whic ...
independently of the other points in the Brillouin zone.
Probability current
The Schrödinger equation is consistent with
local probability conservation.
It also ensures that a normalized wavefunction remains normalized after time evolution. In matrix mechanics, this means that the
time evolution operator is a
unitary operator
In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product.
Non-trivial examples include rotations, reflections, and the Fourier operator.
Unitary operators generalize unitar ...
.
In contrast to, for example, the Klein Gordon equation, although a redefined inner product of a wavefunction can be time independent, the total volume integral of modulus square of the wavefunction need not be time independent.
The continuity equation for probability in non relativistic quantum mechanics is stated as:
where
is the
probability current or probability flux (flow per unit area).
If the wavefunction is represented as
where
is a real function which represents the complex phase of the wavefunction, then the probability flux is calculated as:
Hence, the spatial variation of the phase of a wavefunction is said to characterize the probability flux of the wavefunction. Although the
term appears to play the role of velocity, it does not represent velocity at a point since simultaneous measurement of position and velocity violates
uncertainty principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
.
Separation of variables
If the Hamiltonian is not an explicit function of time, Schrödinger's equation reads:
The operator on the left side depends only on time; the one on the right side depends only on space.
Solving the equation by
separation of variables
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary differential equation, ordinary and partial differential equations, in which algebra allows one to rewrite an equation so tha ...
means seeking a solution of the form of a product of spatial and temporal parts
where
is a function of all the spatial coordinate(s) of the particle(s) constituting the system only, and
is a function of time only. Substituting this expression for
into the time dependent left hand side shows that
is a phase factor:
A solution of this type is called ''stationary,'' since the only time dependence is a phase factor that cancels when the probability density is calculated via the Born rule.
[
The spatial part of the full wave function solves the equation]
where the energy appears in the phase factor.
This generalizes to any number of particles in any number of dimensions (in a time-independent potential): the standing wave
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect t ...
solutions of the time-independent equation are the states with definite energy, instead of a probability distribution of different energies. In physics, these standing waves are called "stationary state
A stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector, energy eigenstate, ene ...
s" or " energy eigenstates"; in chemistry they are called "atomic orbital
In quantum mechanics, an atomic orbital () is a Function (mathematics), function describing the location and Matter wave, wave-like behavior of an electron in an atom. This function describes an electron's Charge density, charge distribution a ...
s" or "molecular orbital
In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding ...
s". Superpositions of energy eigenstates change their properties according to the relative phases between the energy levels. The energy eigenstates form a basis: any wave function may be written as a sum over the discrete energy states or an integral over continuous energy states, or more generally as an integral over a measure. This is an example of the spectral theorem
In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involvin ...
, and in a finite-dimensional state space it is just a statement of the completeness of the eigenvectors of a Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
.
Separation of variables can also be a useful method for the time-independent Schrödinger equation. For example, depending on the symmetry of the problem, the Cartesian axes might be separated, as in
or radial and angular coordinates might be separated:
Examples
Particle in a box
The particle in a one-dimensional potential energy box is the most mathematically simple example where restraints lead to the quantization of energy levels. The box is defined as having zero potential energy ''inside'' a certain region and infinite potential energy ''outside''. For the one-dimensional case in the direction, the time-independent Schrödinger equation may be written
With the differential operator defined by
the previous equation is evocative of the classic kinetic energy analogue,
with state in this case having energy coincident with the kinetic energy of the particle.
The general solutions of the Schrödinger equation for the particle in a box are
or, from Euler's formula
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for ...
,
The infinite potential walls of the box determine the values of and at and where must be zero. Thus, at ,
and . At ,
in which cannot be zero as this would conflict with the postulate that has norm 1. Therefore, since , must be an integer multiple of ,
This constraint on implies a constraint on the energy levels, yielding
A finite potential well is the generalization of the infinite potential well problem to potential wells having finite depth. The finite potential well problem is mathematically more complicated than the infinite particle-in-a-box problem as the wave function is not pinned to zero at the walls of the well. Instead, the wave function must satisfy more complicated mathematical boundary conditions as it is nonzero in regions outside the well. Another related problem is that of the rectangular potential barrier, which furnishes a model for the quantum tunneling
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
effect that plays an important role in the performance of modern technologies such as flash memory
Flash memory is an Integrated circuit, electronic Non-volatile memory, non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for t ...
and scanning tunneling microscopy
A scanning tunneling microscope (STM) is a type of scanning probe microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in ...
.
Harmonic oscillator
The Schrödinger equation for this situation is
where is the displacement and the angular frequency. Furthermore, it can be used to describe approximately a wide variety of other systems, including vibrating atoms, molecules, and atoms or ions in lattices, and approximating other potentials near equilibrium points. It is also the basis of perturbation methods in quantum mechanics.
The solutions in position space are
where , and the functions are the Hermite polynomials
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.
The polynomials arise in:
* signal processing as Hermitian wavelets for wavelet transform analysis
* probability, such as the Edgeworth series, as well a ...
of order . The solution set may be generated by
The eigenvalues are
The case is called the ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state ...
, its energy is called the zero-point energy
Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly Quantum fluctuation, fluctuate in their lowest energy state as described by the Heisen ...
, and the wave function is a Gaussian.
The harmonic oscillator, like the particle in a box, illustrates the generic feature of the Schrödinger equation that the energies of bound eigenstates are discretized.
Hydrogen atom
The Schrödinger equation for the electron in a hydrogen atom
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
(or a hydrogen-like atom) is
where is the electron charge, is the position of the electron relative to the nucleus, is the magnitude of the relative position, the potential term is due to the Coulomb interaction, wherein is the permittivity of free space
Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric const ...
and
is the 2-body reduced mass
In physics, reduced mass is a measure of the effective inertial mass of a system with two or more particles when the particles are interacting with each other. Reduced mass allows the two-body problem to be solved as if it were a one-body probl ...
of the hydrogen nucleus (just a proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
) of mass and the electron of mass . The negative sign arises in the potential term since the proton and electron are oppositely charged. The reduced mass in place of the electron mass is used since the electron and proton together orbit each other about a common center of mass, and constitute a two-body problem to solve. The motion of the electron is of principal interest here, so the equivalent one-body problem is the motion of the electron using the reduced mass.
The Schrödinger equation for a hydrogen atom can be solved by separation of variables. In this case, spherical polar coordinates
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are
* the radial distance along the line connecting the point to a fixed point ...
are the most convenient. Thus,
where are radial functions and are spherical harmonics of degree and order . This is the only atom for which the Schrödinger equation has been solved for exactly. Multi-electron atoms require approximate methods. The family of solutions are:
where
* is the Bohr radius
The Bohr radius () is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an at ...
,
* are the generalized Laguerre polynomials of degree ,
* are the principal, azimuthal, and magnetic
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, m ...
quantum numbers
In Quantum mechanics, quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system.
To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditi ...
respectively, which take the values
Approximate solutions
It is typically not possible to solve the Schrödinger equation exactly for situations of physical interest. Accordingly, approximate solutions are obtained using techniques like variational methods
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions
and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
and WKB approximation
In mathematical physics, the WKB approximation or WKB method is a technique for finding approximate solutions to Linear differential equation, linear differential equations with spatially varying coefficients. It is typically used for a Semiclass ...
. It is also common to treat a problem of interest as a small modification to a problem that can be solved exactly, a method known as perturbation theory
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
.
Semiclassical limit
One simple way to compare classical to quantum mechanics is to consider the time-evolution of the ''expected'' position and ''expected'' momentum, which can then be compared to the time-evolution of the ordinary position and momentum in classical mechanics. The quantum expectation values satisfy the Ehrenfest theorem
The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators ''x'' and ''p'' to the expectation value of the force F=-V'(x) on a m ...
. For a one-dimensional quantum particle moving in a potential , the Ehrenfest theorem says
Although the first of these equations is consistent with the classical behavior, the second is not: If the pair were to satisfy Newton's second law, the right-hand side of the second equation would have to be
which is typically not the same as . For a general , therefore, quantum mechanics can lead to predictions where expectation values do not mimic the classical behavior. In the case of the quantum harmonic oscillator, however, is linear and this distinction disappears, so that in this very special case, the expected position and expected momentum do exactly follow the classical trajectories.
For general systems, the best we can hope for is that the expected position and momentum will ''approximately'' follow the classical trajectories. If the wave function is highly concentrated around a point , then and will be ''almost'' the same, since both will be approximately equal to . In that case, the expected position and expected momentum will remain very close to the classical trajectories, at least for as long as the wave function remains highly localized in position.
The Schrödinger equation in its general form
is closely related to the Hamilton–Jacobi equation
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mecha ...
(HJE)
where is the classical action and is the Hamiltonian function (not operator). Here the generalized coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.p. 397 ...
for (used in the context of the HJE) can be set to the position in Cartesian coordinates as .
Substituting
where is the probability density, into the Schrödinger equation and then taking the limit in the resulting equation yield the Hamilton–Jacobi equation
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mecha ...
.
Density matrices
Wave functions are not always the most convenient way to describe quantum systems and their behavior. When the preparation of a system is only imperfectly known, or when the system under investigation is a part of a larger whole, density matrices
In quantum mechanics, a density matrix (or density operator) is a matrix used in calculating the probabilities of the outcomes of measurements performed on physical systems. It is a generalization of the state vectors or wavefunctions: while th ...
may be used instead. A density matrix is a positive semi-definite operator whose trace is equal to 1. (The term "density operator" is also used, particularly when the underlying Hilbert space is infinite-dimensional.) The set of all density matrices is convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
, and the extreme points are the operators that project onto vectors in the Hilbert space. These are the density-matrix representations of wave functions; in Dirac notation, they are written
The density-matrix analogue of the Schrödinger equation for wave functions is
where the brackets denote a commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
. This is variously known as the von Neumann equation, the Liouville–von Neumann equation, or just the Schrödinger equation for density matrices. If the Hamiltonian is time-independent, this equation can be easily solved to yield
More generally, if the unitary operator describes wave function evolution over some time interval, then the time evolution of a density matrix over that same interval is given by
Unitary evolution of a density matrix conserves its von Neumann entropy.
Relativistic quantum physics and quantum field theory
The one-particle Schrödinger equation described above is valid essentially in the nonrelativistic domain. For one reason, it is essentially invariant under Galilean transformation
In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotati ...
s, which form the symmetry group of Newtonian dynamics. Moreover, processes that change particle number are natural in relativity, and so an equation for one particle (or any fixed number thereof) can only be of limited use. A more general form of the Schrödinger equation that also applies in relativistic situations can be formulated within quantum field theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
(QFT), a framework that allows the combination of quantum mechanics with special relativity. The region in which both simultaneously apply may be described by relativistic quantum mechanics. Such descriptions may use time evolution generated by a Hamiltonian operator, as in the Schrödinger functional method.
Klein–Gordon and Dirac equations
Attempts to combine quantum physics with special relativity began with building relativistic wave equations from the relativistic energy–momentum relation
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It i ...
instead of nonrelativistic energy equations. The Klein–Gordon equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is named after Oskar Klein and Walter Gordon. It is second-order i ...
and the Dirac equation
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac ...
are two such equations. The Klein–Gordon equation,
was the first such equation to be obtained, even before the nonrelativistic one-particle Schrödinger equation, and applies to massive spinless particles. Historically, Dirac obtained the Dirac equation by seeking a differential equation that would be first-order in both time and space, a desirable property for a relativistic theory. Taking the "square root" of the left-hand side of the Klein–Gordon equation in this way required factorizing it into a product of two operators, which Dirac wrote using 4 × 4 matrices . Consequently, the wave function also became a four-component function, governed by the Dirac equation that, in free space, read
This has again the form of the Schrödinger equation, with the time derivative of the wave function being given by a Hamiltonian operator acting upon the wave function. Including influences upon the particle requires modifying the Hamiltonian operator. For example, the Dirac Hamiltonian for a particle of mass and electric charge in an electromagnetic field (described by the electromagnetic potentials and ) is:
in which the and are the Dirac gamma matrices
In mathematical physics, the gamma matrices, \ \left\\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra \ \mathr ...
related to the spin of the particle. The Dirac equation is true for all particles, and the solutions to the equation are spinor field
In differential geometry, given a spin structure on an n-dimensional orientable Riemannian manifold (M, g),\, one defines the spinor bundle to be the complex vector bundle \pi_\colon\to M\, associated to the corresponding principal bundle \pi_\co ...
s with two components corresponding to the particle and the other two for the antiparticle
In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the ...
.
For the Klein–Gordon equation, the general form of the Schrödinger equation is inconvenient to use, and in practice the Hamiltonian is not expressed in an analogous way to the Dirac Hamiltonian. The equations for relativistic quantum fields, of which the Klein–Gordon and Dirac equations are two examples, can be obtained in other ways, such as starting from a Lagrangian density and using the Euler–Lagrange equations for fields, or using the representation theory of the Lorentz group
The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrix (mathematics), matrices, linear transformations, or unitary operators on some Hilbert space; it has a v ...
in which certain representations can be used to fix the equation for a free particle of given spin (and mass).
In general, the Hamiltonian to be substituted in the general Schrödinger equation is not just a function of the position and momentum operators (and possibly time), but also of spin matrices. Also, the solutions to a relativistic wave equation, for a massive particle of spin , are complex-valued spinor field
In differential geometry, given a spin structure on an n-dimensional orientable Riemannian manifold (M, g),\, one defines the spinor bundle to be the complex vector bundle \pi_\colon\to M\, associated to the corresponding principal bundle \pi_\co ...
s.
Fock space
As originally formulated, the Dirac equation is an equation for a single quantum particle, just like the single-particle Schrödinger equation with wave function This is of limited use in relativistic quantum mechanics, where particle number is not fixed. Heuristically, this complication can be motivated by noting that mass–energy equivalence implies material particles can be created from energy. A common way to address this in QFT is to introduce a Hilbert space where the basis states are labeled by particle number, a so-called Fock space. The Schrödinger equation can then be formulated for quantum states on this Hilbert space. However, because the Schrödinger equation picks out a preferred time axis, the Lorentz invariance of the theory is no longer manifest, and accordingly, the theory is often formulated in other ways.
History
Following Max Planck
Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German Theoretical physics, theoretical physicist whose discovery of energy quantum, quanta won him the Nobel Prize in Physics in 1918.
Planck made many substantial con ...
's quantization of light (see black-body radiation
Black-body radiation is the thermal radiation, thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific ...
), Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
interpreted Planck's quanta to be photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s, particles of light, and proposed that the energy of a photon is proportional to its frequency, one of the first signs of wave–particle duality
Wave–particle duality is the concept in quantum mechanics that fundamental entities of the universe, like photons and electrons, exhibit particle or wave (physics), wave properties according to the experimental circumstances. It expresses the in ...
. Since energy and momentum
In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
are related in the same way as frequency
Frequency is the number of occurrences of a repeating event per unit of time. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio ...
and wave number
In the physical sciences, the wavenumber (or wave number), also known as repetency, is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of r ...
in special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
, it followed that the momentum of a photon is inversely proportional to its wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
, or proportional to its wave number :
where is the Planck constant
The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
and is the reduced Planck constant. Louis de Broglie
Louis Victor Pierre Raymond, 7th Duc de Broglie (15 August 1892 – 19 March 1987) was a French theoretical physicist and aristocrat known for his contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of elec ...
hypothesized that this is true for all particles, even particles which have mass such as electrons. He showed that, assuming that the matter wave
Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave-like behavior. For example, a beam of electrons can be diffract ...
s propagate along with their particle counterparts, electrons form standing wave
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect t ...
s, meaning that only certain discrete rotational frequencies about the nucleus of an atom are allowed.
These quantized orbits correspond to discrete energy level
A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
s, and de Broglie reproduced the Bohr model
In atomic physics, the Bohr model or Rutherford–Bohr model was a model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear Rutherford model, model, i ...
formula for the energy levels. The Bohr model was based on the assumed quantization of angular momentum according to
According to de Broglie, the electron is described by a wave, and a whole number of wavelengths must fit along the circumference of the electron's orbit:
This approach essentially confined the electron wave in one dimension, along a circular orbit of radius .
In 1921, prior to de Broglie, Arthur C. Lunn at the University of Chicago had used the same argument based on the completion of the relativistic energy–momentum 4-vector to derive what we now call the de Broglie relation. Unlike de Broglie, Lunn went on to formulate the differential equation now known as the Schrödinger equation and solve for its energy eigenvalues for the hydrogen atom; the paper was rejected by the ''Physical Review'', according to Kamen.
Following up on de Broglie's ideas, physicist Peter Debye
Peter Joseph William Debye ( ; born Petrus Josephus Wilhelmus Debije, ; March 24, 1884 – November 2, 1966) was a Dutch-American physicist and physical chemist, and Nobel laureate in Chemistry.
Biography
Early life
Born in Maastricht, Neth ...
made an offhand comment that if particles behaved as waves, they should satisfy some sort of wave equation. Inspired by Debye's remark, Schrödinger decided to find a proper 3-dimensional wave equation for the electron. He was guided by William Rowan Hamilton
Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish astronomer, mathematician, and physicist who made numerous major contributions to abstract algebra, classical mechanics, and optics. His theoretical works and mathema ...
's analogy between mechanics and optics, encoded in the observation that the zero-wavelength limit of optics resembles a mechanical system—the trajectories of light rays become sharp tracks that obey Fermat's principle
Fermat's principle, also known as the principle of least time, is the link between geometrical optics, ray optics and physical optics, wave optics. Fermat's principle states that the path taken by a Ray (optics), ray between two given ...
, an analog of the principle of least action
Action principles lie at the heart of fundamental physics, from classical mechanics through quantum mechanics, particle physics, and general relativity. Action principles start with an energy function called a Lagrangian describing the physical sy ...
.
The equation he found is
By that time Arnold Sommerfeld
Arnold Johannes Wilhelm Sommerfeld (; 5 December 1868 – 26 April 1951) was a German Theoretical physics, theoretical physicist who pioneered developments in Atomic physics, atomic and Quantum mechanics, quantum physics, and also educated and ...
had refined the Bohr model with relativistic corrections. Schrödinger used the relativistic energy–momentum relation to find what is now known as the Klein–Gordon equation
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is named after Oskar Klein and Walter Gordon. It is second-order i ...
in a Coulomb potential
Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physic ...
(in natural units
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light may be set to 1, and it may then be omitted, equa ...
):
He found the standing waves of this relativistic equation, but the relativistic corrections disagreed with Sommerfeld's formula. Discouraged, he put away his calculations and secluded himself with a mistress in a mountain cabin in December 1925.
While at the cabin, Schrödinger decided that his earlier nonrelativistic calculations were novel enough to publish and decided to leave off the problem of relativistic corrections for the future. Despite the difficulties in solving the differential equation for hydrogen (he had sought help from his friend the mathematician Hermann Weyl
Hermann Klaus Hugo Weyl (; ; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist, logician and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, ...
) Schrödinger showed that his nonrelativistic version of the wave equation produced the correct spectral energies of hydrogen in a paper published in 1926. Schrödinger computed the hydrogen spectral series
The emission spectrum of atomic hydrogen has been divided into a number of ''spectral series'', with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels i ...
by treating a hydrogen atom
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
's electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
as a wave , moving in a potential well
A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy ( kinetic energy in the case of a gravitational potential well) because it is cap ...
, created by the proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
. This computation accurately reproduced the energy levels of the Bohr model
In atomic physics, the Bohr model or Rutherford–Bohr model was a model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear Rutherford model, model, i ...
.
The Schrödinger equation details the behavior of but says nothing of its ''nature''. Schrödinger tried to interpret the real part of as a charge density, and then revised this proposal, saying in his next paper that the modulus squared of is a charge density. This approach was, however, unsuccessful. In 1926, just a few days after this paper was published, Max Born
Max Born (; 11 December 1882 – 5 January 1970) was a German-British theoretical physicist who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics, and supervised the work of a ...
successfully interpreted as the probability amplitude
In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity at a point in space represents a probability density at that point.
Probability amplitu ...
, whose modulus squared is equal to probability density.[ Later, Schrödinger himself explained this interpretation as follows:
]
Interpretation
The Schrödinger equation provides a way to calculate the wave function of a system and how it changes dynamically in time. However, the Schrödinger equation does not directly say ''what,'' exactly, the wave function is. The meaning of the Schrödinger equation and how the mathematical entities in it relate to physical reality depends upon the interpretation of quantum mechanics that one adopts.
In the views often grouped together as the Copenhagen interpretation
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretat ...
, a system's wave function is a collection of statistical information about that system. The Schrödinger equation relates information about the system at one time to information about it at another. While the time-evolution process represented by the Schrödinger equation is continuous and deterministic, in that knowing the wave function at one instant is in principle sufficient to calculate it for all future times, wave functions can also change discontinuously and stochastically during a measurement
Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events.
In other words, measurement is a process of determining how large or small a physical quantity is as compared to ...
. The wave function changes, according to this school of thought, because new information is available. The post-measurement wave function generally cannot be known prior to the measurement, but the probabilities for the different possibilities can be calculated using the Born rule
The Born rule is a postulate of quantum mechanics that gives the probability that a measurement of a quantum system will yield a given result. In one commonly used application, it states that the probability density for finding a particle at a ...
. Other, more recent interpretations of quantum mechanics, such as relational quantum mechanics
Relational quantum mechanics (RQM) is an interpretation of quantum mechanics which treats the state of a quantum system as being relational, that is, the state ''is'' the relation between the observer and the system. This interpretation was fir ...
and QBism also give the Schrödinger equation a status of this sort.
Schrödinger himself suggested in 1952 that the different terms of a superposition evolving under the Schrödinger equation are "not alternatives but all really happen simultaneously". This has been interpreted as an early version of Everett's many-worlds interpretation
The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is Philosophical realism, objectively real, and that there is no wave function collapse. This implies that all Possible ...
. This interpretation, formulated independently in 1956, holds that ''all'' the possibilities described by quantum theory ''simultaneously'' occur in a multiverse composed of mostly independent parallel universes. This interpretation removes the axiom of wave function collapse, leaving only continuous evolution under the Schrödinger equation, and so all possible states of the measured system and the measuring apparatus, together with the observer, are present in a real physical quantum superposition
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödi ...
. While the multiverse is deterministic, we perceive non-deterministic behavior governed by probabilities, because we do not observe the multiverse as a whole, but only one parallel universe at a time. Exactly how this is supposed to work has been the subject of much debate. Why should we assign probabilities at all to outcomes that are certain to occur in some worlds, and why should the probabilities be given by the Born rule? Several ways to answer these questions in the many-worlds framework have been proposed, but there is no consensus on whether they are successful.
Bohmian mechanics reformulates quantum mechanics to make it deterministic, at the price of adding a force due to a "quantum potential". It attributes to each physical system not only a wave function but in addition a real position that evolves deterministically under a nonlocal guiding equation. The evolution of a physical system is given at all times by the Schrödinger equation together with the guiding equation.
See also
* Eckhaus equation
* Fokker–Planck equation
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag (physi ...
* Interpretations of quantum mechanics
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily b ...
* List of things named after Erwin Schrödinger
* Logarithmic Schrödinger equation In theoretical physics, the logarithmic Schrödinger equation (sometimes abbreviated as LNSE or LogSE) is one of the nonlinear modifications of Schrödinger's equation, first proposed by Gerald H. Rosen in its relativistic version (with D'Alember ...
* Nonlinear Schrödinger equation
In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonli ...
* Pauli equation
In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic f ...
* Quantum channel
* Relation between Schrödinger's equation and the path integral formulation of quantum mechanics
* Schrödinger picture
* Wigner quasiprobability distribution
Notes
References
External links
*
Quantum Cook Book
(PDF) an
PHYS 201: Fundamentals of Physics II
by Ramamurti Shankar, Yale OpenCourseware
The Modern Revolution in Physics
– an online textbook.
Quantum Physics I
at MIT OpenCourseWare
MIT OpenCourseWare (MIT OCW) is an initiative of the Massachusetts Institute of Technology (MIT) to publish all of the educational materials from its undergraduate- and graduate-level courses online, freely and openly available to anyone, anywh ...
{{DEFAULTSORT:Schrodinger Equation
Partial differential equations
Wave mechanics
Functions of space and time