Robert M. Solovay
   HOME

TheInfoList



OR:

Robert Martin Solovay (born December 15, 1938) is an American
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
working in
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
.


Biography

Solovay earned his Ph.D. from the
University of Chicago The University of Chicago (UChicago, Chicago, or UChi) is a Private university, private research university in Chicago, Illinois, United States. Its main campus is in the Hyde Park, Chicago, Hyde Park neighborhood on Chicago's South Side, Chic ...
in 1964 under the direction of
Saunders Mac Lane Saunders Mac Lane (August 4, 1909 – April 14, 2005), born Leslie Saunders MacLane, was an American mathematician who co-founded category theory with Samuel Eilenberg. Early life and education Mac Lane was born in Norwich, Connecticut, near w ...
, with a dissertation on ''A Functorial Form of the Differentiable
Riemann–Roch theorem The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It re ...
''. Solovay has spent his career at the
University of California at Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a public land-grant research university in Berkeley, California, United States. Founded in 1868 and named after the Anglo-Irish philosopher George Berkele ...
, where his Ph.D. students include W. Hugh Woodin and
Matthew Foreman Matthew Dean Foreman is an American mathematician at University of California, Irvine. He has made notable contributions in set theory and in ergodic theory. Biography Born in Los Alamos, New Mexico, Foreman earned his Ph.D. from the Univer ...
.


Work

Solovay's theorems include: * Solovay's theorem showing that, if one assumes the existence of an
inaccessible cardinal In set theory, a cardinal number is a strongly inaccessible cardinal if it is uncountable, regular, and a strong limit cardinal. A cardinal is a weakly inaccessible cardinal if it is uncountable, regular, and a weak limit cardinal. Since abou ...
, then the statement "every
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s is Lebesgue measurable" is consistent with
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
without the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
; * Isolating the notion of 0#; * Proving that the existence of a real-valued measurable cardinal is equiconsistent with the existence of a measurable cardinal; * Proving that if \lambda is a strong limit
singular cardinal Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singular ...
, greater than a
strongly compact cardinal In set theory, a strongly compact cardinal is a certain kind of large cardinal. An uncountable cardinal κ is strongly compact if and only if every κ-complete filter can be extended to a κ-complete ultrafilter. Strongly compact cardinals were ...
then 2^\lambda=\lambda^+ holds; * Proving that if \kappa is an uncountable regular cardinal, and S\subseteq\kappa is a
stationary set In mathematics, specifically set theory and model theory, a stationary set is a set that is not too small in the sense that it intersects all club sets and is analogous to a set of non-zero measure in measure theory. There are at least three closel ...
, then S can be decomposed into the union of \kappa disjoint stationary sets; * With Stanley Tennenbaum, developing the method of iterated forcing and showing the consistency of Suslin's hypothesis; * With Donald A. Martin, showed the consistency of Martin's axiom with arbitrarily large
cardinality of the continuum In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \ ...
; * Outside of set theory, developing (with Volker Strassen) the Solovay–Strassen primality test, used to identify large
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s that are
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
with high
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
. This method has had implications for
cryptography Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
; *Regarding the
P versus NP problem The P versus NP problem is a major unsolved problem in theoretical computer science. Informally, it asks whether every problem whose solution can be quickly verified can also be quickly solved. Here, "quickly" means an algorithm exists that ...
, he proved with T. P. Baker and J. Gill that relativizing arguments cannot prove \mathrm \neq \mathrm. * Proving that GL (the
normal modal logic In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains: * All propositional tautology (logic), tautologies; * All instances of the Kripke_semantics, Kripke schema: \Box(A\to B)\to(\Box A\to\Box B) and it is closed ...
which has the instances of the schema \Box(\Box A\to A)\to\Box A as additional axioms) completely axiomatizes the logic of the provability predicate of
Peano arithmetic In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
; * With Alexei Kitaev, proving that a finite set of
quantum gate In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. Quantum logic gates are the building blocks of quantu ...
s can efficiently approximate an arbitrary
unitary operator In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Non-trivial examples include rotations, reflections, and the Fourier operator. Unitary operators generalize unitar ...
on one
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical syste ...
in what is now known as Solovay–Kitaev theorem.


Selected publications

* * *


See also

*
Provability logic Provability logic is a modal logic, in which the box (or "necessity") operator is interpreted as 'it is provable that'. The point is to capture the notion of a proof predicate of a reasonably rich formal theory, such as Peano arithmetic. Examples ...


References


External links

* * {{DEFAULTSORT:Solovay, Robert M. American logicians Members of the United States National Academy of Sciences 20th-century American mathematicians Set theorists 1938 births Living people