HOME

TheInfoList



OR:

The rings of Neptune consist primarily of five principal
rings Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film an ...
. They were first discovered (as "arcs") by simultaneous observations of a stellar occultation on 22 July 1984 by André Brahic's and William B. Hubbard's teams at
La Silla Observatory La Silla Observatory is an astronomical observatory in Chile with three telescopes built and operated by the European Southern Observatory (ESO). Several other telescopes are located at the site and are partly maintained by ESO. The observatory i ...
(ESO) and at Cerro Tololo Interamerican Observatory in Chile. They were eventually imaged in 1989 by the ''
Voyager 2 ''Voyager 2'' is a space probe launched by NASA on August 20, 1977, to study the outer planets and interstellar space beyond the Sun's heliosphere. As a part of the Voyager program, it was launched 16 days before its twin, '' Voyager 1'', on ...
'' spacecraft. At their densest, they are comparable to the less dense portions of Saturn's main rings such as the C ring and the Cassini Division, but much of
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
's ring system is quite tenuous, faint and dusty, more closely resembling the rings of Jupiter. Neptune's rings are named after astronomers who contributed important work on the planet:
Galle Galle ( si, ගාල්ල, translit=Gālla; ta, காலி, translit=Kāli) (formerly Point de Galle) is a major city in Sri Lanka, situated on the southwestern tip, from Colombo. Galle is the provincial capital and largest city of Souther ...
, Le Verrier, Lassell, Arago, and Adams. Neptune also has a faint unnamed ring coincident with the orbit of the moon Galatea. Three other moons orbit between the rings:
Naiad In Greek mythology, the naiads (; grc-gre, ναϊάδες, naïádes) are a type of female spirit, or nymph, presiding over fountains, wells, springs, streams, brooks and other bodies of fresh water. They are distinct from river gods, who ...
, Thalassa and Despina. The rings of Neptune are made of extremely dark material, likely organic compounds processed by
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, vi ...
, similar to those found in the
rings of Uranus The rings of Uranus are intermediate in complexity between the more extensive set around Rings of Saturn, Saturn and the simpler systems around Rings of Jupiter, Jupiter and Rings of Neptune, Neptune. The planetary rings, rings of Uranus were dis ...
. The proportion of dust in the rings (between 20% and 70%) is high, while their
optical depth In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to ''transmitted'' radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power throu ...
is low to moderate, at less than 0.1. Uniquely, the Adams ring includes five distinct arcs, named Fraternité, Égalité 1 and 2, Liberté, and Courage. The arcs occupy a narrow range of orbital longitudes and are remarkably stable, having changed only slightly since their initial detection in 1980. How the arcs are stabilized is still under debate. However, their stability is probably related to the
resonant Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillat ...
interaction between the Adams ring and its inner shepherd moon, Galatea.


Discovery and observations

The first mention of rings around Neptune dates back to 1846 when William Lassell, the discoverer of Neptune's largest moon, Triton, thought he had seen a ring around the planet. However, his claim was never confirmed and it is likely that it was an observational artifact. The first reliable detection of a ring was made in 1968 by stellar
occultation An occultation is an event that occurs when one object is hidden from the observer by another object that passes between them. The term is often used in astronomy, but can also refer to any situation in which an object in the foreground blocks ...
, although that result would go unnoticed until 1977 when the
rings of Uranus The rings of Uranus are intermediate in complexity between the more extensive set around Rings of Saturn, Saturn and the simpler systems around Rings of Jupiter, Jupiter and Rings of Neptune, Neptune. The planetary rings, rings of Uranus were dis ...
were discovered. Soon after the Uranus discovery, a team from
Villanova University Villanova University is a private Roman Catholic research university in Villanova, Pennsylvania. It was founded by the Augustinians in 1842 and named after Saint Thomas of Villanova. The university is the oldest Catholic university in Pennsy ...
led by Harold J. Reitsema began searching for rings around Neptune. On 24 May 1981, they detected a dip in a star's brightness during one occultation; however, the manner in which the star dimmed did not suggest a ring. Later, after the Voyager fly-by, it was found that the occultation was due to the small Neptunian moon Larissa, a highly unusual event. In the 1980s, significant occultations were much rarer for Neptune than for Uranus, which lay near the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
at the time and was thus moving against a denser field of stars. Neptune's next occultation, on 12 September 1983, resulted in a possible detection of a ring. However, ground-based results were inconclusive. Over the next six years, approximately 50 other occultations were observed with only about one-third of them yielding positive results. Something (probably incomplete arcs) definitely existed around Neptune, but the features of the ring system remained a mystery. The ''
Voyager 2 ''Voyager 2'' is a space probe launched by NASA on August 20, 1977, to study the outer planets and interstellar space beyond the Sun's heliosphere. As a part of the Voyager program, it was launched 16 days before its twin, '' Voyager 1'', on ...
'' spacecraft made the definitive discovery of the Neptunian rings during its fly-by of Neptune in 1989, passing by as close as above the planet's atmosphere on 25 August. It confirmed that occasional occultation events observed before were indeed caused by the arcs within the Adams ring (see below). After the ''Voyager'' fly-by the previous terrestrial occultation observations were reanalyzed yielding features of the ring's arcs as they were in 1980s, which matched those found by ''Voyager 2'' almost perfectly. Since ''Voyager 2''s fly-by, the brightest rings (Adams and Le Verrier) have been imaged with the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
and Earth-based telescopes, owing to advances in resolution and light-gathering power. They are visible, slightly above background noise levels, at
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on ...
-absorbed
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s in which the glare from Neptune is significantly reduced. The fainter rings are still far below the visibility threshold for these instruments. In 2022 the rings were imaged by the James Webb Space Telescope, which made the first observation of the fainter rings since the ''Voyager 2''s fly-by.


General properties

Neptune possesses five distinct rings named, in order of increasing distance from the planet, Galle, Le Verrier, Lassell, Arago and Adams. In addition to these well-defined rings, Neptune may also possess an extremely faint sheet of material stretching inward from the Le Verrier to the Galle ring, and possibly farther in toward the planet. Three of the Neptunian rings are narrow, with widths of about 100 km or less; in contrast, the Galle and Lassell rings are broad—their widths are between 2,000 and 5,000 km. The Adams ring consists of five bright arcs embedded in a fainter continuous ring. Proceeding counterclockwise, the arcs are: Fraternité, Égalité 1 and 2, Liberté, and Courage. The first three names come from " liberty, equality, fraternity", the motto of the
French Revolution The French Revolution ( ) was a period of radical political and societal change in France that began with the Estates General of 1789 and ended with the formation of the French Consulate in November 1799. Many of its ideas are consider ...
and
Republic A republic () is a "state in which power rests with the people or their representatives; specifically a state without a monarchy" and also a "government, or system of government, of such a state." Previously, especially in the 17th and 18th c ...
. The terminology was suggested by their original discoverers, who had found them during stellar occultations in 1984 and 1985. Four small Neptunian moons have orbits inside the ring system:
Naiad In Greek mythology, the naiads (; grc-gre, ναϊάδες, naïádes) are a type of female spirit, or nymph, presiding over fountains, wells, springs, streams, brooks and other bodies of fresh water. They are distinct from river gods, who ...
and Thalassa orbit in the gap between the Galle and Le Verrier rings; Despina is just inward of the Le Verrier ring; and Galatea lies slightly inward of the Adams ring, embedded in an unnamed faint, narrow ringlet. The Neptunian rings contain a large quantity of micrometer-sized
dust Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian process), volcanic eruptions, and pollution. Dust in ho ...
: the dust fraction by cross-section area is between 20% and 70%. In this respect they are similar to the rings of Jupiter, in which the dust fraction is 50%–100%, and are very different from the
rings of Saturn The rings of Saturn are the most extensive ring system of any planet in the Solar System. They consist of countless small particles, ranging in size from micrometers to meters, that orbit around Saturn. The ring particles are made almost entir ...
and
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus (Caelus), who, according to Greek mythology, was the great-grandfather of Ares ( Mars), grandfather of Zeus ( Jupiter) and father of ...
, which contain little dust (less than 0.1%). The particles in Neptune's rings are made from a dark material; probably a mixture of ice with
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, vi ...
-processed organics. The rings are reddish in color, and their geometrical (0.05) and Bond (0.01–0.02)
albedo Albedo (; ) is the measure of the diffuse reflection of sunlight, solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body ...
s are similar to those of the Uranian rings' particles and the inner Neptunian moons. The rings are generally optically thin (transparent); their normal
optical depth In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to ''transmitted'' radiant power through a material. Thus, the larger the optical depth, the smaller the amount of transmitted radiant power throu ...
s do not exceed 0.1. As a whole, the Neptunian rings resemble those of Jupiter; both systems consist of faint, narrow, dusty ringlets and even fainter broad dusty rings. The rings of Neptune, like those of Uranus, are thought to be relatively young; their age is probably significantly less than that of the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. Also, like those of Uranus, Neptune's rings probably resulted from the collisional fragmentation of onetime inner moons. Such events create
moonlet A moonlet, minor moon, minor natural satellite, or minor satellite is a particularly small natural satellite orbiting a planet, dwarf planet, or other minor planet. Up until 1995, moonlets were only hypothetical components of Saturn's F-ring ...
belts, which act as the sources of dust for the rings. In this respect the rings of Neptune are similar to faint dusty bands observed by ''Voyager 2'' between the main rings of Uranus.


Inner rings

The innermost ring of Neptune is called the ''Galle ring'' after
Johann Gottfried Galle Johann Gottfried Galle (9 June 1812 – 10 July 1910) was a German astronomer from Radis, Germany, at the Berlin Observatory who, on 23 September 1846, with the assistance of student Heinrich Louis d'Arrest, was the first person to view the p ...
, the first person to see Neptune through a telescope (1846). It is about 2,000 km wide and orbits 41,000–43,000 km from the planet. It is a faint ring with an average normal optical depth of around 10−4, and with an equivalent depth of 0.15 km. The fraction of dust in this ring is estimated from 40% to 70%. The next ring is named the ''Le Verrier ring'' after
Urbain Le Verrier Urbain Jean Joseph Le Verrier FRS (FOR) HFRSE (; 11 March 1811 – 23 September 1877) was a French astronomer and mathematician who specialized in celestial mechanics and is best known for predicting the existence and position of Neptune using ...
, who predicted Neptune's position in 1846. With an orbital radius of about 53,200 km, it is narrow, with a width of about 113 km. Its normal optical depth is 0.0062 ± 0.0015, which corresponds to an equivalent depth of 0.7 ± 0.2 km. The dust fraction in the Le Verrier ring ranges from 40% to 70%. The small moon Despina, which orbits just inside of it at 52,526 km, may play a role in the ring's confinement by acting as a
shepherd A shepherd or sheepherder is a person who tends, herds, feeds, or guards flocks of sheep. ''Shepherd'' derives from Old English ''sceaphierde (''sceap'' 'sheep' + ''hierde'' 'herder'). ''Shepherding is one of the world's oldest occupations, i ...
. The ''Lassell ring'', also known as the ''plateau'', is the broadest ring in the Neptunian system. Its namesake is William Lassell, the English astronomer who discovered Neptune's largest moon, Triton. This ring is a faint sheet of material occupying the space between the Le Verrier ring at about 53,200 km and the Arago ring at 57,200 km. Its average normal optical depth is around 10−4, which corresponds to an equivalent depth of 0.4 km. The ring's dust fraction is in the range from 20% to 40%. There is a small peak of brightness near the outer edge of the Lassell ring, located at 57,200 km from Neptune and less than 100 km wide, which some planetary scientists call the ''Arago ring'' after
François Arago Dominique François Jean Arago ( ca, Domènec Francesc Joan Aragó), known simply as François Arago (; Catalan: ''Francesc Aragó'', ; 26 February 17862 October 1853), was a French mathematician, physicist, astronomer, freemason, supporter of t ...
, a French mathematician, physicist, astronomer and politician. However, many publications do not mention the Arago ring at all.


Adams ring

The outer Adams ring, with an orbital radius of about 63,930 km, is the best studied of Neptune's rings. It is named after
John Couch Adams John Couch Adams (; 5 June 1819 – 21 January 1892) was a British mathematician and astronomer. He was born in Laneast, near Launceston, Cornwall, and died in Cambridge. His most famous achievement was predicting the existence and position of ...
, who predicted the position of Neptune independently of Le Verrier. This ring is narrow, slightly eccentric and inclined, with total width of about 35 km (15–50 km), and its normal optical depth is around 0.011 ± 0.003 outside the arcs, which corresponds to the equivalent depth of about 0.4 km. The fraction of dust in this ring is from 20% to 40%—lower than in other narrow rings. Neptune's small moon Galatea, which orbits just inside of the Adams ring at 61,953 km, acts like a shepherd, keeping ring particles inside a narrow range of orbital radii through a 42:43 outer Lindblad resonance. Galatea's gravitational influence creates 42 radial wiggles in the Adams ring with an amplitude of about 30 km, which have been used to infer Galatea's
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
.


Arcs

The brightest parts of the Adams ring, the ring arcs, were the first elements of Neptune's ring system to be discovered. The arcs are discrete regions within the ring in which the particles that it comprises are mysteriously clustered together. The Adams ring is known to comprise five short arcs, which occupy a relatively narrow range of
longitude Longitude (, ) is a geographic coordinate that specifies the east– west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lette ...
s from 247° to 294°. In 1986 they were located between longitudes of: * 247–257° (Fraternité), * 261–264° (Égalité 1), * 265–266° (Égalité 2), * 276–280° (Liberté), * 284.5–285.5° (Courage). The brightest and longest arc was Fraternité; the faintest was Courage. The normal optical depths of the arcs are estimated to lie in the range 0.03–0.09 (0.034 ± 0.005 for the leading edge of Liberté arc as measured by stellar occultation); the radial widths are approximately the same as those of the continuous ring—about 30 km. The equivalent depths of arcs vary in the range 1.25–2.15 km (0.77 ± 0.13 km for the leading edge of Liberté arc). The fraction of dust in the arcs is from 40% to 70%. The arcs in the Adams ring are somewhat similar to the arc in Saturn's G ring. The highest resolution ''Voyager 2'' images revealed a pronounced clumpiness in the arcs, with a typical separation between visible clumps of 0.1° to 0.2°, which corresponds to 100–200 km along the ring. Because the clumps were not resolved, they may or may not include larger bodies, but are certainly associated with concentrations of microscopic dust as evidenced by their enhanced brightness when backlit by the Sun. The arcs are quite stable structures. They were detected by ground-based stellar occultations in the 1980s, by ''Voyager 2'' in 1989 and by Hubble Space Telescope and ground-based telescopes in 1997–2005 and remained at approximately the same orbital longitudes. However some changes have been noticed. The overall brightness of arcs decreased since 1986. The Courage arc jumped forward by 8° to 294° (it probably jumped over to the next stable co-rotation resonance position) while the Liberté arc had almost disappeared by 2003. The Fraternité and Égalité (1 and 2) arcs have demonstrated irregular variations in their relative brightness. Their observed dynamics is probably related to the exchange of dust between them. Courage, a very faint arc found during the Voyager flyby, was seen to flare in brightness in 1998; it was back to its usual dimness by June 2005. Visible light observations show that the total amount of material in the arcs has remained approximately constant, but they are dimmer in the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from arou ...
light wavelengths where previous observations were taken.


Confinement

The arcs in the Adams ring remain unexplained. Their existence is a puzzle because basic orbital dynamics imply that they should spread out into a uniform ring over a matter of years. Several theories about the arcs' confinement have been suggested, the most widely publicized of which holds that Galatea confines the arcs via its 42:43 co-rotational inclination resonance (CIR). The resonance creates 84 stable sites along the ring's orbit, each 4° long, with arcs residing in the adjacent sites. However measurements of the rings' mean motion with Hubble and Keck telescopes in 1998 led to the conclusion that the rings are not in CIR with Galatea. A later model suggested that confinement resulted from a co-rotational eccentricity resonance (CER). The model takes into account the finite mass of the Adams ring, which is necessary to move the resonance closer to the ring. A byproduct of this theory is a mass estimate for the Adams ring—about 0.002 of the mass of Galatea. A third theory proposed in 1986 requires an additional moon orbiting inside the ring; the arcs in this case are trapped in its stable
Lagrangian point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of ...
s. However ''Voyager 2s observations placed strict constraints on the size and mass of any undiscovered moons, making such a theory unlikely. Some other more complicated theories hold that a number of moonlets are trapped in co-rotational resonances with Galatea, providing confinement of the arcs and simultaneously serving as sources of the dust.


Exploration

The rings were investigated in detail during the ''Voyager 2'' spacecraft's flyby of Neptune in August 1989. They were studied with optical imaging, and through observations of occultations in ultraviolet and visible light. The spaceprobe observed the rings in different geometries relative to the Sun, producing images of back-scattered, forward-scattered and side-scattered light.Forward-scattered light is light scattered at a small angle relative to solar light. Back-scattered light is light scattered at an angle close to 180° (backwards) relative to solar light. The scattering angle is close to 90° for side-scattered light. Analysis of these images allowed derivation of the phase function (dependence of the ring's reflectivity on the angle between the observer and Sun), and geometrical and Bond albedo of ring particles. Analysis of Voyager's images also led to discovery of six inner
moons of Neptune The planet Neptune has 14 known moons, which are named for minor water deities in Greek mythology. By far the largest of them is Triton, discovered by William Lassell on October 10, 1846, 17 days after the discovery of Neptune itself; over a ...
, including the Adams ring shepherd Galatea.


Properties

''*A question mark means that the parameter is not known.''


Notes


References


External links


Neptune's Rings
b
NASA's Solar System Exploration


{{Featured article Neptune
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
198908??