HOME

TheInfoList



OR:

In
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
, ring theory is the study of rings
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set o ...
s in which addition and multiplication are defined and have similar properties to those operations defined for the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. Ring theory studies the structure of rings, their representations, or, in different language,
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
, special classes of rings (
group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the giv ...
s,
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
s,
universal enveloping algebra In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the represent ...
s), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
s are much better understood than noncommutative ones.
Algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
and
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic o ...
, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
'', a major area of modern mathematics. Because these three fields (algebraic geometry, algebraic number theory and commutative algebra) are so intimately connected it is usually difficult and meaningless to decide which field a particular result belongs to. For example, Hilbert's Nullstellensatz is a theorem which is fundamental for algebraic geometry, and is stated and proved in terms of commutative algebra. Similarly, Fermat's Last Theorem is stated in terms of elementary
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, which is a part of commutative algebra, but its proof involves deep results of both algebraic number theory and algebraic geometry. Noncommutative rings are quite different in flavour, since more unusual behavior can arise. While the theory has developed in its own right, a fairly recent trend has sought to parallel the commutative development by building the theory of certain classes of noncommutative rings in a geometric fashion as if they were rings of functions on (non-existent) 'noncommutative spaces'. This trend started in the 1980s with the development of noncommutative geometry and with the discovery of
quantum group In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebr ...
s. It has led to a better understanding of noncommutative rings, especially noncommutative Noetherian rings. For the definitions of a ring and basic concepts and their properties, see ''
Ring (mathematics) In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying pro ...
''. The definitions of terms used throughout ring theory may be found in '' Glossary of ring theory''.


Commutative rings

A ring is called ''commutative'' if its multiplication is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
. Commutative rings resemble familiar number systems, and various definitions for commutative rings are designed to formalize properties of the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. Commutative rings are also important in
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
. In commutative ring theory, numbers are often replaced by ideals, and the definition of the
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together wi ...
tries to capture the essence of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s.
Integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
s, non-trivial commutative rings where no two non-zero elements multiply to give zero, generalize another property of the integers and serve as the proper realm to study divisibility.
Principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principa ...
s are integral domains in which every ideal can be generated by a single element, another property shared by the integers.
Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers ...
s are integral domains in which the
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an e ...
can be carried out. Important examples of commutative rings can be constructed as rings of
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
s and their factor rings. Summary:
Euclidean domain In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers ...
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principa ...
unique factorization domain
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
.


Algebraic geometry

Algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
is in many ways the mirror image of commutative algebra. This correspondence started with Hilbert's Nullstellensatz that establishes a one-to-one correspondence between the points of an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
, and the maximal ideals of its
coordinate ring In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal ...
. This correspondence has been enlarged and systematized for translating (and proving) most geometrical properties of algebraic varieties into algebraic properties of associated commutative rings. Alexander Grothendieck completed this by introducing
scheme A scheme is a systematic plan for the implementation of a certain idea. Scheme or schemer may refer to: Arts and entertainment * ''The Scheme'' (TV series), a BBC Scotland documentary series * The Scheme (band), an English pop band * ''The Schem ...
s, a generalization of algebraic varieties, which may be built from any commutative ring. More precisely, the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of a commutative ring is the space of its prime ideals equipped with Zariski topology, and augmented with a sheaf of rings. These objects are the "affine schemes" (generalization of affine varieties), and a general scheme is then obtained by "gluing together" (by purely algebraic methods) several such affine schemes, in analogy to the way of constructing a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
by gluing together the
charts A chart (sometimes known as a graph) is a graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". A chart can represent tabu ...
of an
atlas An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geogra ...
.


Noncommutative rings

Noncommutative rings resemble rings of matrices in many respects. Following the model of
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, attempts have been made recently at defining noncommutative geometry based on noncommutative rings. Noncommutative rings and
associative algebra In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplic ...
s (rings that are also
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
s) are often studied via their categories of modules. A
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
over a ring is an abelian group that the ring acts on as a ring of endomorphisms, very much akin to the way fields (integral domains in which every non-zero element is invertible) act on vector spaces. Examples of noncommutative rings are given by rings of square matrices or more generally by rings of endomorphisms of abelian groups or modules, and by monoid rings.


Representation theory

Representation theory is a branch of
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
that draws heavily on non-commutative rings. It studies abstract
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set o ...
s by ''representing'' their elements as linear transformations of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
s, and studies
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in terms of matrix addition and matrix multiplication, which is non-commutative. The
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
ic objects amenable to such a description include
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
,
associative algebra In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplic ...
s and
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identi ...
s. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication.


Some relevant theorems

General * Isomorphism theorems for rings *
Nakayama's lemma In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) an ...
Structure theorems *The Artin–Wedderburn theorem determines the structure of semisimple rings *The Jacobson density theorem determines the structure of primitive rings *
Goldie's theorem In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring ''R'' that has finite uniform dimension (="finite rank") as a right module ...
determines the structure of
semiprime In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime ...
Goldie rings *The
Zariski–Samuel theorem In mathematics, a principal right (left) ideal ring is a ring ''R'' in which every right (left) ideal is of the form ''xR'' (''Rx'') for some element ''x'' of ''R''. (The right and left ideals of this form, generated by one element, are called prin ...
determines the structure of a commutative principal ideal ring *The
Hopkins–Levitzki theorem In the branch of abstract algebra called ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring ''R'' (with 1) is called semiprimary ...
gives necessary and sufficient conditions for a Noetherian ring to be an Artinian ring *
Morita theory In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like ''R'', ''S'' are Morita equivalent (denoted by R\approx S) if their categories of modules ...
consists of theorems determining when two rings have "equivalent" module categories *
Cartan–Brauer–Hua theorem In abstract algebra, the Cartan–Brauer–Hua theorem (named after Richard Brauer, Élie Cartan, and Hua Luogeng) is a theorem pertaining to division rings. It says that given two division rings such that ''xKx''−1 is contained in ''K'' ...
gives insight on the structure of
division ring In algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element ...
s * Wedderburn's little theorem states that finite domains are fields Other *The Skolem–Noether theorem characterizes the
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphis ...
s of
simple ring In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simpl ...
s


Structures and invariants of rings


Dimension of a commutative ring

In this section, ''R'' denotes a commutative ring. The Krull dimension of ''R'' is the supremum of the lengths ''n'' of all the chains of prime ideals \mathfrak_0 \subsetneq \mathfrak_1 \subsetneq \cdots \subsetneq \mathfrak_n. It turns out that the polynomial ring k _1, \cdots, t_n/math> over a field ''k'' has dimension ''n''. The fundamental theorem of dimension theory states that the following numbers coincide for a noetherian local ring (R, \mathfrak): *The Krull dimension of ''R''. *The minimum number of the generators of the \mathfrak-primary ideals. *The dimension of the graded ring \textstyle \operatorname_(R) = \bigoplus_ \mathfrak^k/ (equivalently, 1 plus the degree of its
Hilbert polynomial In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homog ...
). A commutative ring ''R'' is said to be
catenary In physics and geometry, a catenary (, ) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, superfici ...
if for every pair of prime ideals \mathfrak \subset \mathfrak', there exists a finite chain of prime ideals \mathfrak = \mathfrak_0 \subsetneq \cdots \subsetneq \mathfrak_n = \mathfrak' that is maximal in the sense that it is impossible to insert an additional prime ideal between two ideals in the chain, and all such maximal chains between \mathfrak and \mathfrak' have the same length. Practically all noetherian rings that appear in applications are catenary. Ratliff proved that a noetherian local integral domain ''R'' is catenary if and only if for every prime ideal \mathfrak, :\operatornameR = \operatorname\mathfrak + \operatornameR/\mathfrak where \operatorname\mathfrak is the
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For example, "The height of that building is 50 m" or "The height of an airplane in-flight is ab ...
of \mathfrak. If ''R'' is an integral domain that is a finitely generated ''k''-algebra, then its dimension is the transcendence degree of its field of fractions over ''k''. If ''S'' is an
integral extension In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' i ...
of a commutative ring ''R'', then ''S'' and ''R'' have the same dimension. Closely related concepts are those of depth and global dimension. In general, if ''R'' is a noetherian local ring, then the depth of ''R'' is less than or equal to the dimension of ''R''. When the equality holds, ''R'' is called a
Cohen–Macaulay ring In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a fin ...
. A regular local ring is an example of a Cohen–Macaulay ring. It is a theorem of Serre that ''R'' is a regular local ring if and only if it has finite global dimension and in that case the global dimension is the Krull dimension of ''R''. The significance of this is that a global dimension is a
homological Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor *Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chromo ...
notion.


Morita equivalence

Two rings ''R'', ''S'' are said to be Morita equivalent if the category of left modules over ''R'' is equivalent to the category of left modules over ''S''. In fact, two commutative rings which are Morita equivalent must be isomorphic, so the notion does not add anything new to the category of commutative rings. However, commutative rings can be Morita equivalent to noncommutative rings, so Morita equivalence is coarser than isomorphism. Morita equivalence is especially important in algebraic topology and functional analysis.


Finitely generated projective module over a ring and Picard group

Let ''R'' be a commutative ring and \mathbf(R) the set of isomorphism classes of finitely generated
projective module In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characteriz ...
s over ''R''; let also \mathbf_n(R) subsets consisting of those with constant rank ''n''. (The rank of a module ''M'' is the continuous function \operatornameR \to \mathbb, \, \mathfrak \mapsto \dim M \otimes_R k(\mathfrak).) \mathbf_1(R) is usually denoted by Pic(''R''). It is an abelian group called the Picard group of ''R''. If ''R'' is an integral domain with the field of fractions ''F'' of ''R'', then there is an exact sequence of groups: :1 \to R^* \to F^* \overset\to \operatorname(R) \to \operatorname(R) \to 1 where \operatorname(R) is the set of fractional ideals of ''R''. If ''R'' is a regular domain (i.e., regular at any prime ideal), then Pic(R) is precisely the divisor class group of ''R''. For example, if ''R'' is a principal ideal domain, then Pic(''R'') vanishes. In algebraic number theory, ''R'' will be taken to be the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often deno ...
, which is Dedekind and thus regular. It follows that Pic(''R'') is a finite group ( finiteness of class number) that measures the deviation of the ring of integers from being a PID. One can also consider the
group completion In mathematics, the Grothendieck group, or group of differences, of a commutative monoid is a certain abelian group. This abelian group is constructed from in the most universal way, in the sense that any abelian group containing a homomorphic i ...
of \mathbf(R); this results in a commutative ring K0(R). Note that K0(R) = K0(S) if two commutative rings ''R'', ''S'' are Morita equivalent.


Structure of noncommutative rings

The structure of a noncommutative ring is more complicated than that of a commutative ring. For example, there exist
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by Johnn ...
rings that contain no non-trivial proper (two-sided) ideals, yet contain non-trivial proper left or right ideals. Various invariants exist for commutative rings, whereas invariants of noncommutative rings are difficult to find. As an example, the nilradical of a ring, the set of all nilpotent elements, is not necessarily an ideal unless the ring is commutative. Specifically, the set of all nilpotent elements in the ring of all matrices over a division ring never forms an ideal, irrespective of the division ring chosen. There are, however, analogues of the nilradical defined for noncommutative rings, that coincide with the nilradical when commutativity is assumed. The concept of the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition y ...
of a ring; that is, the intersection of all right (left) annihilators of
simple Simple or SIMPLE may refer to: *Simplicity, the state or quality of being simple Arts and entertainment * ''Simple'' (album), by Andy Yorke, 2008, and its title track * "Simple" (Florida Georgia Line song), 2018 * "Simple", a song by Johnn ...
right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by its modules. It is also a fact that the intersection of all maximal right ideals in a ring is the same as the intersection of all maximal left ideals in the ring, in the context of all rings; irrespective of whether the ring is commutative. Noncommutative rings are an active area of research due to their ubiquity in mathematics. For instance, the ring of ''n''-by-''n'' matrices over a field is noncommutative despite its natural occurrence in
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
and many parts of mathematics. More generally, endomorphism rings of abelian groups are rarely commutative, the simplest example being the endomorphism ring of the
Klein four-group In mathematics, the Klein four-group is a group with four elements, in which each element is self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one ...
. One of the best-known strictly noncommutative ring is the
quaternions In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quater ...
.


Applications


The ring of integers of a number field


The coordinate ring of an algebraic variety

If ''X'' is an
affine algebraic variety Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine com ...
, then the set of all regular functions on ''X'' forms a ring called the
coordinate ring In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal ...
of ''X''. For a
projective variety In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables wi ...
, there is an analogous ring called the homogeneous coordinate ring. Those rings are essentially the same things as varieties: they correspond in essentially a unique way. This may be seen via either Hilbert's Nullstellensatz or scheme-theoretic constructions (i.e., Spec and Proj).


Ring of invariants

A basic (and perhaps the most fundamental) question in the classical invariant theory is to find and study polynomials in the polynomial ring k /math> that are invariant under the action of a finite group (or more generally reductive) ''G'' on ''V''. The main example is the ring of symmetric polynomials: symmetric polynomials are polynomials that are invariant under permutation of variable. The fundamental theorem of symmetric polynomials states that this ring is R sigma_1, \ldots, \sigma_n/math> where \sigma_i are elementary symmetric polynomials.


History

Commutative ring theory originated in algebraic number theory, algebraic geometry, and invariant theory. Central to the development of these subjects were the rings of integers in algebraic number fields and algebraic function fields, and the rings of polynomials in two or more variables. Noncommutative ring theory began with attempts to extend the complex numbers to various hypercomplex number systems. The genesis of the theories of commutative and noncommutative rings dates back to the early 19th century, while their maturity was achieved only in the third decade of the 20th century. More precisely,
William Rowan Hamilton Sir William Rowan Hamilton Doctor of Law, LL.D, Doctor of Civil Law, DCL, Royal Irish Academy, MRIA, Royal Astronomical Society#Fellow, FRAS (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist. He was the ...
put forth the
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quater ...
s and biquaternions;
James Cockle Sir James Cockle FRS FRAS FCPS (14 January 1819 – 27 January 1895) was an English lawyer and mathematician. Cockle was born on 14 January 1819. He was the second son of James Cockle, a surgeon, of Great Oakley, Essex. Educated at Charterh ...
presented
tessarine In abstract algebra, a bicomplex number is a pair of complex numbers constructed by the Cayley–Dickson process that defines the bicomplex conjugate (w,z)^* = (w, -z), and the product of two bicomplex numbers as :(u,v)(w,z) = (u w - v z, u z ...
s and
coquaternion In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers. After introduction i ...
s; and
William Kingdon Clifford William Kingdon Clifford (4 May 18453 March 1879) was an English mathematician and philosopher. Building on the work of Hermann Grassmann, he introduced what is now termed geometric algebra, a special case of the Clifford algebra named in hi ...
was an enthusiast of split-biquaternions, which he called ''algebraic motors''. These noncommutative algebras, and the non-associative
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identi ...
s, were studied within
universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study ...
before the subject was divided into particular
mathematical structure In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additiona ...
types. One sign of re-organization was the use of direct sums to describe algebraic structure. The various hypercomplex numbers were identified with
matrix ring In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication . The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'')Lang, ...
s by Joseph Wedderburn (1908) and
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing l ...
(1928). Wedderburn's structure theorems were formulated for finite-dimensional algebras over a field while Artin generalized them to Artinian rings. In 1920, Emmy Noether, in collaboration with W. Schmeidler, published a paper about the theory of ideals in which they defined left and right ideals in a ring. The following year she published a landmark paper called ''Idealtheorie in Ringbereichen'', analyzing
ascending chain condition In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings.Jacobson (2009), p. 142 and 147 These c ...
s with regard to (mathematical) ideals. Noted algebraist Irving Kaplansky called this work "revolutionary"; the publication gave rise to the term " Noetherian ring", and several other mathematical objects being called '' Noetherian''., p. 44–45.


Notes


References

* * * * * * * * * * * * * *. Vol. II, Pure and Applied Mathematics 128, . * {{DEFAULTSORT:Ring Theory ka:რგოლი (მათემატიკა) ro:Inel (algebră)