HOME

TheInfoList



OR:

A regular polyhedron is a
polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all o ...
whose
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
acts transitively on its
flag A flag is a piece of fabric (most often rectangular or quadrilateral) with a distinctive design and colours. It is used as a symbol, a signalling device, or for decoration. The term ''flag'' is also used to refer to the graphic design empl ...
s. A regular polyhedron is highly symmetrical, being all of
edge-transitive In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal () or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given t ...
,
vertex-transitive In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of fa ...
and
face-transitive In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congrue ...
. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s which are assembled in the same way around each
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position ...
. A regular polyhedron is identified by its
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mo ...
of the form , where ''n'' is the number of sides of each face and ''m'' the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s), and four regular
star polyhedra In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: *Polyhedra which self-intersect in a repetitive way. *Concave ...
(the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In addition, there are five regular compounds of the regular polyhedra.


The regular polyhedra

There are five
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
regular polyhedra, known as the
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s, four regular
star polyhedra In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: *Polyhedra which self-intersect in a repetitive way. *Concave ...
, the Kepler–Poinsot polyhedra, and five regular compounds of regular polyhedra:


Platonic solids


Kepler–Poinsot polyhedra


Regular compounds


Characteristics


Equivalent properties

The property of having a similar arrangement of faces around each vertex can be replaced by any of the following equivalent conditions in the definition: *The vertices of a convex regular polyhedron all lie on a
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
. *All the
dihedral angle A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the un ...
s of the polyhedron are equal *All the
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s of the polyhedron are
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s. *All the
solid angle In geometry, a solid angle (symbol: ) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The poi ...
s of the polyhedron are congruent.


Concentric spheres

A convex regular polyhedron has all of three related spheres (other polyhedra lack at least one kind) which share its centre: * An insphere, tangent to all faces. * An intersphere or midsphere, tangent to all edges. * A
circumsphere In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing, by analogy with the term ''circumcirc ...
, tangent to all vertices.


Symmetry

The regular polyhedra are the most symmetrical of all the polyhedra. They lie in just three
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
s, which are named after the Platonic solids: *Tetrahedral *Octahedral (or cubic) *Icosahedral (or dodecahedral) Any shapes with icosahedral or octahedral symmetry will also contain tetrahedral symmetry.


Euler characteristic

The five Platonic solids have an
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological spac ...
of 2. This simply reflects that the surface is a topological 2-sphere, and so is also true, for example, of any polyhedron which is star-shaped with respect to some interior point.


Interior points

The sum of the distances from any point in the interior of a regular polyhedron to the sides is independent of the location of the point (this is an extension of Viviani's theorem.) However, the converse does not hold, not even for
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
.


Duality of the regular polyhedra

In a dual pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa. The regular polyhedra show this duality as follows: * The
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all ...
is self-dual, i.e. it pairs with itself. * The
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only ...
and
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
are dual to each other. * The
icosahedron In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
and
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
are dual to each other. * The
small stellated dodecahedron In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeti ...
and
great dodecahedron In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagon ...
are dual to each other. * The
great stellated dodecahedron In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each ve ...
and
great icosahedron In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeti ...
are dual to each other. The Schläfli symbol of the dual is just the original written backwards, for example the dual of is .


History


Prehistory

Stones carved in shapes resembling clusters of spheres or knobs have been found in
Scotland Scotland (, ) is a country that is part of the United Kingdom. Covering the northern third of the island of Great Britain, mainland Scotland has a border with England to the southeast and is otherwise surrounded by the Atlantic Ocean to ...
and may be as much as 4,000 years old. Some of these stones show not only the symmetries of the five Platonic solids, but also some of the relations of duality amongst them (that is, that the centres of the faces of the cube gives the vertices of an octahedron). Examples of these stones are on display in the John Evans room of the
Ashmolean Museum The Ashmolean Museum of Art and Archaeology () on Beaumont Street, Oxford, England, is Britain's first public museum. Its first building was erected in 1678–1683 to house the cabinet of curiosities that Elias Ashmole gave to the University o ...
at
Oxford University Oxford () is a city in England. It is the county town and only city of Oxfordshire. In 2020, its population was estimated at 151,584. It is north-west of London, south-east of Birmingham and north-east of Bristol. The city is home to the ...
. Why these objects were made, or how their creators gained the inspiration for them, is a mystery. There is doubt regarding the mathematical interpretation of these objects, as many have non-platonic forms, and perhaps only one has been found to be a true icosahedron, as opposed to a reinterpretation of the icosahedron dual, the dodecahedron. It is also possible that the
Etruscans The Etruscan civilization () was developed by a people of Etruria in ancient Italy with a common language and culture who formed a federation of city-states. After conquering adjacent lands, its territory covered, at its greatest extent, roug ...
preceded the Greeks in their awareness of at least some of the regular polyhedra, as evidenced by the discovery near
Padua Padua ( ; it, Padova ; vec, Pàdova) is a city and ''comune'' in Veneto, northern Italy. Padua is on the river Bacchiglione, west of Venice. It is the capital of the province of Padua. It is also the economic and communications hub of the ...
(in Northern
Italy Italy ( it, Italia ), officially the Italian Republic, ) or the Republic of Italy, is a country in Southern Europe. It is located in the middle of the Mediterranean Sea, and its territory largely coincides with the homonymous geographical ...
) in the late 19th century of a
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
made of
soapstone Soapstone (also known as steatite or soaprock) is a talc-schist, which is a type of metamorphic rock. It is composed largely of the magnesium rich mineral talc. It is produced by dynamothermal metamorphism and metasomatism, which occur in the ...
, and dating back more than 2,500 years (Lindemann, 1987).


Greeks

The earliest known ''written'' records of the regular convex solids originated from Classical Greece. When these solids were all discovered and by whom is not known, but
Theaetetus Theaetetus (Θεαίτητος) is a Greek name which could refer to: * Theaetetus (mathematician) (c. 417 BC – 369 BC), Greek geometer * ''Theaetetus'' (dialogue), a dialogue by Plato, named after the geometer * Theaetetus (crater) Theaetetus ...
(an
Athenian Athens ( ; el, Αθήνα, Athína ; grc, Ἀθῆναι, Athênai (pl.) ) is both the capital and largest city of Greece. With a population close to four million, it is also the seventh largest city in the European Union. Athens dominates a ...
) was the first to give a mathematical description of all five (Van der Waerden, 1954), (Euclid, book XIII). H.S.M. Coxeter (Coxeter, 1948, Section 1.9) credits
Plato Plato ( ; grc-gre, Πλάτων ; 428/427 or 424/423 – 348/347 BC) was a Greek philosopher born in Athens during the Classical period in Ancient Greece. He founded the Platonist school of thought and the Academy, the first institution ...
(400 BC) with having made models of them, and mentions that one of the earlier
Pythagoreans Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, ...
,
Timaeus of Locri Timaeus of Locri (; grc, Τίμαιος ὁ Λοκρός, Tímaios ho Lokrós; la, Timaeus Locrus) is a character in two of Plato's dialogues, ''Timaeus'' and ''Critias''. In both, he appears as a philosopher of the Pythagorean school. If there ...
, used all five in a correspondence between the polyhedra and the nature of the universe as it was then perceived – this correspondence is recorded in Plato's dialogue ''Timaeus''. Euclid's reference to Plato led to their common description as the ''Platonic solids''. One might characterise the Greek definition as follows: *A regular polygon is a (
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
) planar figure with all edges equal and all corners equal. *A regular polyhedron is a solid (convex) figure with all faces being congruent regular polygons, the same number arranged all alike around each vertex. This definition rules out, for example, the
square pyramid In geometry, a square pyramid is a pyramid having a square base. If the apex is perpendicularly above the center of the square, it is a right square pyramid, and has symmetry. If all edge lengths are equal, it is an equilateral square pyrami ...
(since although all the faces are regular, the square base is not congruent to the triangular sides), or the shape formed by joining two tetrahedra together (since although all faces of that
triangular bipyramid In geometry, the triangular bipyramid (or dipyramid) is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces. As the name suggests, ...
would be equilateral triangles, that is, congruent and regular, some vertices have 3 triangles and others have 4). This concept of a regular polyhedron would remain unchallenged for almost 2000 years.


Regular star polyhedra

Regular star polygons such as the
pentagram A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle arou ...
(star pentagon) were also known to the ancient Greeks – the
pentagram A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle arou ...
was used by the
Pythagoreans Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, ...
as their secret sign, but they did not use them to construct polyhedra. It was not until the early 17th century that
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
realised that pentagrams could be used as the faces of regular
star polyhedra In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: *Polyhedra which self-intersect in a repetitive way. *Concave ...
. Some of these star polyhedra may have been discovered by others before Kepler's time, but Kepler was the first to recognise that they could be considered "regular" if one removed the restriction that regular polyhedra be convex. Two hundred years later
Louis Poinsot Louis Poinsot (3 January 1777 – 5 December 1859) was a French mathematician and physicist. Poinsot was the inventor of geometrical mechanics, showing how a system of forces acting on a rigid body could be resolved into a single force and a ...
also allowed star
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s (circuits around each corner), enabling him to discover two new regular star polyhedra along with rediscovering Kepler's. These four are the only regular star polyhedra, and have come to be known as the Kepler–Poinsot polyhedra. It was not until the mid-19th century, several decades after Poinsot published, that Cayley gave them their modern English names: (Kepler's)
small stellated dodecahedron In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeti ...
and
great stellated dodecahedron In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each ve ...
, and (Poinsot's)
great icosahedron In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra (nonconvex regular polyhedra), with Schläfli symbol and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeti ...
and
great dodecahedron In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of . It is one of four nonconvex regular polyhedra. It is composed of 12 pentagonal faces (six pairs of parallel pentagon ...
. The Kepler–Poinsot polyhedra may be constructed from the Platonic solids by a process called
stellation In geometry, stellation is the process of extending a polygon in two dimensions, polyhedron in three dimensions, or, in general, a polytope in ''n'' dimensions to form a new figure. Starting with an original figure, the process extends specif ...
. The reciprocal process to stellation is called facetting (or faceting). Every stellation of one polyhedron is dual, or reciprocal, to some facetting of the dual polyhedron. The regular star polyhedra can also be obtained by facetting the Platonic solids. This was first done by Bertrand around the same time that Cayley named them. By the end of the 19th century there were therefore nine regular polyhedra – five convex and four star.


Regular polyhedra in nature

Each of the Platonic solids occurs naturally in one form or another. The tetrahedron, cube, and octahedron all occur as
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s. These by no means exhaust the numbers of possible forms of crystals (Smith, 1982, p212), of which there are 48. Neither the
regular icosahedron In geometry, a regular icosahedron ( or ) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It ...
nor the
regular dodecahedron A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 ed ...
are amongst them, but crystals can have the shape of a
pyritohedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentago ...
, which is visually almost indistinguishable from a regular dodecahedron. Truly icosahedral crystals may be formed by quasicrystalline materials which are very rare in nature but can be produced in a laboratory. A more recent discovery is of a series of new types of
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
molecule, known as the
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
s (see Curl, 1991). Although C60, the most easily produced fullerene, looks more or less spherical, some of the larger varieties (such as C240, C480 and C960) are hypothesised to take on the form of slightly rounded icosahedra, a few nanometres across. Regular polyhedra appear in biology as well. The
coccolithophore Coccolithophores, or coccolithophorids, are single celled organisms which are part of the phytoplankton, the autotrophic (self-feeding) component of the plankton community. They form a group of about 200 species, and belong either to the king ...
''
Braarudosphaera bigelowii ''Braarudosphaera bigelowii'' is a coastal coccolithophore in the fossil record going back 100 million years. The family Braarudosphaeraceae are single-celled coastal phytoplanktonic algae with calcareous Calcareous () is an adjective meanin ...
'' has a regular dodecahedral structure, about 10
micrometre The micrometre (American and British English spelling differences#-re, -er, international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American and British English spelling differences# ...
s across.Hagino, K., Onuma, R., Kawachi, M. and Horiguchi, T. (2013) "Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in ''Braarudosphaera bigelowii'' (Prymnesiophyceae)". ''PLoS One'', 8(12): e81749. . In the early 20th century,
Ernst Haeckel Ernst Heinrich Philipp August Haeckel (; 16 February 1834 – 9 August 1919) was a German zoologist, naturalist, eugenicist, philosopher, physician, professor, marine biologist and artist. He discovered, described and named thousands of new s ...
described a number of species of radiolarians, some of whose shells are shaped like various regular polyhedra.Haeckel, E. (1904). ''
Kunstformen der Natur (known in English as ''Art Forms in Nature'') is a book of lithographic and halftone prints by German biologist Ernst Haeckel. ...
''. Available as Haeckel, E. ''Art forms in nature'', Prestel USA (1998), . Online version a
Kurt Stüber's Biolib
(in german)
Examples include ''Circoporus octahedrus'', ''Circogonia icosahedra'', ''Lithocubus geometricus'' and ''Circorrhegma dodecahedra''; the shapes of these creatures are indicated by their names. The outer protein shells of many
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es form regular polyhedra. For example, HIV is enclosed in a regular icosahedron, as is the head of a typical
myovirus ''Myoviridae'' is a family of bacteriophages in the order ''Caudovirales''. Bacteria and archaea serve as natural hosts. There are 625 species in this family, assigned to eight subfamilies and 217 genera. Subdivisions The subfamily ''Tevenvirina ...
. File:Braarudosphaera bigelowii.jpg, The
coccolithophore Coccolithophores, or coccolithophorids, are single celled organisms which are part of the phytoplankton, the autotrophic (self-feeding) component of the plankton community. They form a group of about 200 species, and belong either to the king ...
''
Braarudosphaera bigelowii ''Braarudosphaera bigelowii'' is a coastal coccolithophore in the fossil record going back 100 million years. The family Braarudosphaeraceae are single-celled coastal phytoplanktonic algae with calcareous Calcareous () is an adjective meanin ...
'' has a regular dodecahedral structure File:Circogonia icosahedra.jpg, The radiolarian '' Circogonia icosahedra'' has a regular icosahedral structure File:Structure of a Myoviridae bacteriophage 2.jpg, A
myovirus ''Myoviridae'' is a family of bacteriophages in the order ''Caudovirales''. Bacteria and archaea serve as natural hosts. There are 625 species in this family, assigned to eight subfamilies and 217 genera. Subdivisions The subfamily ''Tevenvirina ...
typically has a regular icosahedral
capsid A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or ma ...
(head) about 100
nanometer 330px, Different lengths as in respect to the molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re, ...
s across.
In ancient times the
Pythagoreans Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, ...
believed that there was a harmony between the regular polyhedra and the orbits of the
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s. In the 17th century,
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
studied data on planetary motion compiled by
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was ...
and for a decade tried to establish the Pythagorean ideal by finding a match between the sizes of the polyhedra and the sizes of the planets' orbits. His search failed in its original objective, but out of this research came Kepler's discoveries of the Kepler solids as regular polytopes, the realisation that the orbits of planets are not circles, and the laws of planetary motion for which he is now famous. In Kepler's time only five planets (excluding the earth) were known, nicely matching the number of Platonic solids. Kepler's work, and the discovery since that time of
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus ( Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of ...
and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
, have invalidated the Pythagorean idea. Around the same time as the Pythagoreans, Plato described a theory of matter in which the five elements (earth, air, fire, water and spirit) each comprised tiny copies of one of the five regular solids. Matter was built up from a mixture of these polyhedra, with each substance having different proportions in the mix. Two thousand years later
Dalton's atomic theory John Dalton (; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. He is best known for introducing the atomic theory into chemistry, and for his research into colour blindness, which he had. Colour b ...
would show this idea to be along the right lines, though not related directly to the regular solids.


Further generalisations

The 20th century saw a succession of generalisations of the idea of a regular polyhedron, leading to several new classes.


Regular skew apeirohedra

In the first decades, Coxeter and Petrie allowed "saddle" vertices with alternating ridges and valleys, enabling them to construct three infinite folded surfaces which they called regular skew polyhedra. Coxeter offered a modified
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to mo ...
for these figures, with implying the
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
, with ''m'' regular ''l''-gons around a vertex. The ''n'' defines ''n''-gonal ''holes''. Their vertex figures are
regular skew polygon The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrumen ...
s, vertices zig-zagging between two planes.


Regular skew polyhedra

Finite regular skew polyhedra exist in 4-space. These finite regular skew polyhedra in 4-space can be seen as a subset of the faces of
uniform 4-polytope In geometry, a uniform 4-polytope (or uniform polychoron) is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons. There are 47 non-prismatic convex uniform 4-polytopes. Th ...
s. They have planar
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
faces, but
regular skew polygon The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrumen ...
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s. Two dual solutions are related to the
5-cell In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol . It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It ...
, two dual solutions are related to the
24-cell In geometry, the 24-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called C24, or the icositetrachoron, octaplex (short for "octahedral complex"), icosatetrahedroid, o ...
, and an infinite set of self-dual
duoprism In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an -polytope and an -polytope is an -polytope, wher ...
s generate regular skew polyhedra as . In the infinite limit these approach a
duocylinder The duocylinder, also called the double cylinder or the bidisc, is a geometric object embedded in 4- dimensional Euclidean space, defined as the Cartesian product of two disks of respective radii ''r''1 and ''r''2: :D = \left\ It is analogo ...
and look like a
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does n ...
in their
stereographic projection In mathematics, a stereographic projection is a perspective projection of the sphere, through a specific point on the sphere (the ''pole'' or ''center of projection''), onto a plane (the ''projection plane'') perpendicular to the diameter thro ...
s into 3-space.


Regular polyhedra in non-Euclidean and other spaces

Studies of non-Euclidean (
hyperbolic Hyperbolic is an adjective describing something that resembles or pertains to a hyperbola (a curve), to hyperbole (an overstatement or exaggeration), or to hyperbolic geometry. The following phenomena are described as ''hyperbolic'' because they ...
and elliptic) and other spaces such as complex spaces, discovered over the preceding century, led to the discovery of more new polyhedra such as complex polyhedra which could only take regular geometric form in those spaces.


Regular polyhedra in hyperbolic space

In H3
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
, paracompact regular honeycombs have Euclidean tiling
facets A facet is a flat surface of a geometric shape, e.g., of a cut gemstone. Facet may also refer to: Arts, entertainment, and media * ''Facets'' (album), an album by Jim Croce * ''Facets'', a 1980 album by jazz pianist Monty Alexander and his tri ...
and
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw line ...
s that act like finite polyhedra. Such tilings have an
angle defect In geometry, the (angular) defect (or deficit or deficiency) means the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the excess. Classically the def ...
that can be closed by bending one way or the other. If the tiling is properly scaled, it will ''close'' as an asymptotic limit at a single
ideal point In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line ''l'' and a point ''P'' not on ''l'', right- and left- limiting parallels to ''l'' through '' ...
. These Euclidean tilings are inscribed in a
horosphere In hyperbolic geometry, a horosphere (or parasphere) is a specific hypersurface in hyperbolic ''n''-space. It is the boundary of a horoball, the limit of a sequence of increasing balls sharing (on one side) a tangent hyperplane and its point of ...
just as polyhedra are inscribed in a sphere (which contains zero ideal points). The sequence extends when hyperbolic tilings are themselves used as facets of noncompact hyperbolic tessellations, as in the heptagonal tiling honeycomb ; they are inscribed in an equidistant surface (a 2- hypercycle), which has two ideal points.


Regular tilings of the real projective plane

Another group of regular polyhedra comprise tilings of the
real projective plane In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has b ...
. These include the hemi-cube, hemi-octahedron, hemi-dodecahedron, and hemi-icosahedron. They are (globally) projective polyhedra, and are the projective counterparts of the
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s. The tetrahedron does not have a projective counterpart as it does not have pairs of parallel faces which can be identified, as the other four Platonic solids do. These occur as dual pairs in the same way as the original Platonic solids do. Their Euler characteristics are all 1.


Abstract regular polyhedra

By now, polyhedra were firmly understood as three-dimensional examples of more general ''
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
s'' in any number of dimensions. The second half of the century saw the development of abstract algebraic ideas such as
Polyhedral combinatorics Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral co ...
, culminating in the idea of an abstract polytope as a
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
(poset) of elements. The elements of an abstract polyhedron are its body (the maximal element), its faces, edges, vertices and the ''null polytope'' or empty set. These abstract elements can be mapped into ordinary space or ''realised'' as geometrical figures. Some abstract polyhedra have well-formed or ''faithful'' realisations, others do not. A ''flag'' is a connected set of elements of each dimension – for a polyhedron that is the body, a face, an edge of the face, a vertex of the edge, and the null polytope. An abstract polytope is said to be ''regular'' if its combinatorial symmetries are transitive on its flags – that is to say, that any flag can be mapped onto any other under a symmetry of the polyhedron. Abstract regular polytopes remain an active area of research. Five such regular abstract polyhedra, which can not be realised faithfully, were identified by
H. S. M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
in his book ''
Regular Polytopes In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
'' (1977) and again by J. M. Wills in his paper "The combinatorially regular polyhedra of index 2" (1987). All five have C2×S5 symmetry but can only be realised with half the symmetry, that is C2×A5 or icosahedral symmetry. They are all topologically equivalent to
toroid In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its ...
s. Their construction, by arranging ''n'' faces around each vertex, can be repeated indefinitely as tilings of the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ' ...
. In the diagrams below, the hyperbolic tiling images have colors corresponding to those of the polyhedra images. :


Petrie dual

The Petrie dual of a regular polyhedron is a regular map whose vertices and edges correspond to the vertices and edges of the original polyhedron, and whose faces are the set of skew
Petrie polygon In geometry, a Petrie polygon for a regular polytope of dimensions is a skew polygon in which every consecutive sides (but no ) belongs to one of the facets. The Petrie polygon of a regular polygon is the regular polygon itself; that of a ...
s.


Spherical polyhedra

The usual nine regular polyhedra can also be represented as spherical tilings (tilings of the
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
):


Regular polyhedra that can only exist as spherical polyhedra

For a regular polyhedron whose Schläfli symbol is , the number of polygonal faces may be found by: :N_2=\frac The
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s known to antiquity are the only integer solutions for ''m'' ≥ 3 and ''n'' ≥ 3. The restriction ''m'' ≥ 3 enforces that the polygonal faces must have at least three sides. When considering polyhedra as a spherical tiling, this restriction may be relaxed, since
digon In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visu ...
s (2-gons) can be represented as spherical lunes, having non-zero
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an op ...
. Allowing ''m'' = 2 admits a new infinite class of regular polyhedra, which are the hosohedra. On a spherical surface, the regular polyhedron is represented as ''n'' abutting lunes, with interior angles of 2/''n''. All these lunes share two common vertices.Coxeter, ''Regular polytopes'', p. 12 A regular dihedron, (2-hedron) in three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
can be considered a degenerate prism consisting of two (planar) ''n''-sided
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two ...
s connected "back-to-back", so that the resulting object has no depth, analogously to how a digon can be constructed with two
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between i ...
s. However, as a spherical tiling, a dihedron can exist as nondegenerate form, with two ''n''-sided faces covering the sphere, each face being a
hemisphere Hemisphere refers to: * A half of a sphere As half of the Earth * A hemisphere of Earth ** Northern Hemisphere ** Southern Hemisphere ** Eastern Hemisphere ** Western Hemisphere ** Land and water hemispheres * A half of the (geocentric) celes ...
, and vertices around a
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geome ...
. It is ''regular'' if the vertices are equally spaced. The hosohedron is dual to the dihedron . Note that when ''n'' = 2, we obtain the polyhedron , which is both a hosohedron and a dihedron. All of these have Euler characteristic 2.


See also

*
Quasiregular polyhedron In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the se ...
*
Semiregular polyhedron In geometry, the term semiregular polyhedron (or semiregular polytope) is used variously by different authors. Definitions In its original definition, it is a polyhedron with regular polygonal faces, and a symmetry group which is transitive on ...
*
Uniform polyhedron In geometry, a uniform polyhedron has regular polygons as Face (geometry), faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruence (geometry), congruent. Unifor ...
*
Regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...


References

* Bertrand, J. (1858). Note sur la théorie des polyèdres réguliers, ''Comptes rendus des séances de l'Académie des Sciences'', 46, pp. 79–82. * Haeckel, E. (1904). ''
Kunstformen der Natur (known in English as ''Art Forms in Nature'') is a book of lithographic and halftone prints by German biologist Ernst Haeckel. ...
''. Available as Haeckel, E. ''Art forms in nature'', Prestel USA (1998), , or online at http://caliban.mpiz-koeln.mpg.de/~stueber/haeckel/kunstformen/natur.html *Smith, J. V. (1982). ''Geometrical And Structural Crystallography''. John Wiley and Sons. * Sommerville, D. M. Y. (1930). ''An Introduction to the Geometry of n Dimensions.'' E. P. Dutton, New York. (Dover Publications edition, 1958). Chapter X: The Regular Polytopes. * Coxeter, H.S.M.; Regular Polytopes (third edition). Dover Publications Inc.
'there are 48 regular polyhedra' jan Misali


External links

* {{DEFAULTSORT:Regular Polyhedron