In
differential geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, lin ...
, the Ricci curvature tensor, named after
Gregorio Ricci-Curbastro
Gregorio Ricci-Curbastro (; 12January 1925) was an Italian mathematician. He is most famous as the discoverer of tensor calculus.
With his former student Tullio Levi-Civita, he wrote his most famous single publication, a pioneering work on the ...
, is a geometric object which is determined by a choice of
Riemannian or
pseudo-Riemannian metric
In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the r ...
on a
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
or
pseudo-Euclidean space In mathematics and theoretical physics, a pseudo-Euclidean space of signature is a finite- dimensional real -space together with a non- degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vect ...
.
The Ricci tensor can be characterized by measurement of how a shape is deformed as one moves along
geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s in the space. In
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, which involves the pseudo-Riemannian setting, this is reflected by the presence of the Ricci tensor in the
Raychaudhuri equation
In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.
The equation is important as a fundamental lemma for the Penrose–Hawking singularity th ...
. Partly for this reason, the
Einstein field equations
In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
propose that spacetime can be described by a pseudo-Riemannian metric, with a strikingly simple relationship between the Ricci tensor and the matter content of the universe.
Like the metric tensor, the Ricci tensor assigns to each
tangent space
In mathematics, the tangent space of a manifold is a generalization of to curves in two-dimensional space and to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be ...
of the manifold a
symmetric bilinear form
In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a biline ...
. Broadly, one could analogize the role of the Ricci curvature in Riemannian geometry to that of the
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
in the analysis of functions; in this analogy, the
Riemann curvature tensor
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to mathematical analysis, analysis, number theory, and differential geometry. In the field of real analysis, he is mos ...
, of which the Ricci curvature is a natural by-product, would correspond to the full matrix of second derivatives of a function. However, there are
other ways to draw the same analogy.
For
three-dimensional manifolds, the Ricci tensor contains all of the information which in higher dimensions is encoded by the more complicated
Riemann curvature tensor
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to mathematical analysis, analysis, number theory, and differential geometry. In the field of real analysis, he is mos ...
. In part, this simplicity allows for the application of many geometric and analytic tools, which led to the
solution of the Poincaré conjecture through the work of
Richard S. Hamilton and
Grigori Perelman
Grigori Yakovlevich Perelman (, ; born 13June 1966) is a Russian mathematician and geometer who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman resigned from his ...
.
In differential geometry, the determination of lower bounds on the Ricci tensor on a Riemannian manifold would allow one to extract global geometric and topological information by comparison (cf.
comparison theorem In mathematics, comparison theorems are theorems whose statement involves comparisons between various mathematical objects of the same type, and often occur in fields such as calculus, differential equations and Riemannian geometry.
Differential e ...
) with the geometry of a constant curvature
space form. This is since lower bounds on the Ricci tensor can be successfully used in studying the length functional in Riemannian geometry, as first shown in 1941 via
Myers's theorem.
One common source of the Ricci tensor is that it arises whenever one commutes the covariant derivative with the tensor Laplacian. This, for instance, explains its presence in the
Bochner formula, which is used ubiquitously in Riemannian geometry. For example, this formula explains why the gradient estimates due to
Shing-Tung Yau
Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar ...
(and their developments such as the Cheng-Yau and Li-Yau inequalities) nearly always depend on a lower bound for the Ricci curvature.
In 2007,
John Lott,
Karl-Theodor Sturm, and
Cedric Villani demonstrated decisively that lower bounds on Ricci curvature can be understood entirely in terms of the metric space structure of a Riemannian manifold, together with its volume form. This established a deep link between Ricci curvature and
Wasserstein geometry and
optimal transport, which is presently the subject of much research.
Definition
Suppose that
is an
-dimensional
Riemannian or
pseudo-Riemannian manifold
In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
, equipped
with its
Levi-Civita connection
In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...
. The
Riemann curvature of
is a map which
takes smooth vector fields
,
, and
,
and returns the vector field
on
vector field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
s
. Since
is a tensor field, for
each point
, it gives rise to a (multilinear) map:
Define for each point
the map
by
That is, having fixed
and
, then for any orthonormal basis
of the vector space
, one has
It is a standard exercise of (multi)linear
algebra to verify that this definition does not depend on the choice of the basis
.
In
abstract index notation
Abstract index notation (also referred to as slot-naming index notation) is a mathematical notation for tensors and spinors that uses indices to indicate their types, rather than their components in a particular basis. The indices are mere placeh ...
,
Sign conventions. Note that some sources define
to be
what would here be called
they would then define
as
Although sign conventions differ about the Riemann tensor, they do not differ about
the Ricci tensor.
Definition via local coordinates on a smooth manifold
Let
be a smooth
Riemannian
or
pseudo-Riemannian -manifold.
Given a smooth chart
one then has functions
and
for each
which satisfy
for all
. The latter shows that, expressed as
matrices,
.
The functions
are defined by evaluating
on
coordinate vector fields, while the functions
are defined so
that, as a matrix-valued function, they provide an inverse to the matrix-valued
function
.
Now define, for each
,
,
,
,
and
between 1 and
, the functions
as maps
.
Now let
and
be two smooth charts with
.
Let
be the functions computed as above via the chart
and let
be the functions computed as above via the chart
.
Then one can check by a calculation with the chain rule and the product rule that
where
is the first derivative along
th direction
of
.
This shows that the following definition does not depend on the choice of
.
For any
, define a bilinear map
by
where
and
are the
components of the tangent vectors at
in
and
relative to
the coordinate vector fields of
.
It is common to abbreviate the above formal presentation in the following style:
The final line includes the demonstration that the bilinear map Ric is well-defined,
which is much easier to write out with the informal notation.
Comparison of the definitions
The two above definitions are identical. The formulas defining
and
in the coordinate approach have an exact parallel in the formulas defining the Levi-Civita connection, and the Riemann curvature via the Levi-Civita connection. Arguably, the definitions directly using local coordinates are preferable, since the "crucial property" of the Riemann tensor mentioned above requires
to be Hausdorff in order to hold. By contrast, the local coordinate approach only requires a smooth atlas. It is also somewhat easier to connect the "invariance" philosophy underlying the local approach with the methods of constructing more exotic geometric objects, such as
spinor field
In differential geometry, given a spin structure on an n-dimensional orientable Riemannian manifold (M, g),\, one defines the spinor bundle to be the complex vector bundle \pi_\colon\to M\, associated to the corresponding principal bundle \pi_\co ...
s.
The complicated formula defining
in the introductory section is the same as that in the following section. The only difference is that terms have been grouped so that it is easy to see that
Properties
As can be seen from the symmetries of the Riemann curvature tensor, the Ricci tensor of a Riemannian
manifold is
symmetric
Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is invariant under some transformations ...
, in the sense that
for all
It thus follows linear-algebraically that the Ricci tensor is completely determined
by knowing the quantity
for all vectors
of unit length. This function on the set of unit tangent vectors
is often also called the Ricci curvature, since knowing it is equivalent to
knowing the Ricci curvature tensor.
The Ricci curvature is determined by the
sectional curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
s of a Riemannian
manifold, but generally contains less information. Indeed, if
is a
vector of unit length on a Riemannian
-manifold, then
is precisely
times the average value of the sectional curvature, taken over all the 2-planes
containing
. There is an
-dimensional family
of such 2-planes, and so only in dimensions 2 and 3 does the Ricci tensor determine
the full curvature tensor. A notable exception is when the manifold is given a
priori as a
hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
of
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. The
second fundamental form,
which determines the full curvature via the
Gauss–Codazzi equation,
is itself determined by the Ricci tensor and the
principal directions
of the hypersurface are also the
eigendirections of the Ricci tensor. The
tensor was introduced by Ricci for this reason.
As can be seen from the second Bianchi identity, one has
where
is the
scalar curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
, defined in local coordinates as
This is often called the contracted second Bianchi identity.
Direct geometric meaning
Near any point
in a Riemannian manifold
,
one can define preferred local coordinates, called
geodesic normal coordinates.
These are adapted to the metric so that geodesics through
correspond
to straight lines through the origin, in such a manner that the geodesic distance
from
corresponds to the Euclidean distance from the origin.
In these coordinates, the metric tensor is well-approximated by the Euclidean
metric, in the precise sense that
In fact, by taking the
Taylor expansion
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
of the metric applied to a
Jacobi field along a radial geodesic in the normal coordinate system, one has
In these coordinates, the metric
volume element
In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form
\ma ...
then has the following expansion at :
which follows by expanding the square root of the
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
of the metric.
Thus, if the Ricci curvature
is positive
in the direction of a vector
, the conical region in
swept out by a tightly focused family of geodesic segments of length
emanating from
, with initial velocity inside
a small cone about
, will have smaller volume than the corresponding
conical region in Euclidean space, at least provided that
is sufficiently small. Similarly, if the Ricci curvature is negative in the
direction of a given vector
, such a conical region in the manifold
will instead have larger volume than it would in Euclidean space.
The Ricci curvature is essentially an average of curvatures in the planes including
. Thus if a cone emitted with an initially circular (or spherical)
cross-section becomes distorted into an ellipse (
ellipsoid
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation.
An ellipsoid is a quadric surface; that is, a Surface (mathemat ...
), it is possible
for the volume distortion to vanish if the distortions along the
principal axes counteract one another. The Ricci
curvature would then vanish along
. In physical applications, the
presence of a nonvanishing
sectional curvature
In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
does not necessarily indicate the
presence of any mass locally; if an initially circular cross-section of a cone
of
worldlines later becomes elliptical, without changing its volume, then
this is due to tidal effects from a mass at some other location.
Applications
Ricci curvature plays an important role in
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, where it is
the key term in the
Einstein field equations
In the General relativity, general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of Matter#In general relativity and cosmology, matter within it. ...
.
Ricci curvature also appears in the
Ricci flow equation, first
introduced by
Richard S. Hamilton in 1982, where certain
one-parameter families of Riemannian metrics are singled out as solutions of a
geometrically-defined partial differential equation.
In
harmonic
In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the ''fundamental frequency'' of a periodic signal. The fundamental frequency is also called the ''1st har ...
local coordinates the Ricci tensor can be expressed as .
where
are the components of the metric tensor and
is the
Laplace–Beltrami operator
In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named aft ...
.
This fact motivates the introduction of the
Ricci flow equation
as a natural extension of the
heat equation
In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quanti ...
for the metric.
Since heat tends to spread through
a solid until the body reaches an equilibrium state of constant temperature, if
one is given a manifold, the Ricci flow may be hoped to produce an 'equilibrium'
Riemannian metric which is
Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
or of constant curvature.
However, such a clean "convergence" picture cannot be achieved since many manifolds
cannot support such metrics. A detailed study of the nature of solutions of the
Ricci flow, due principally to Hamilton and
Grigori Perelman
Grigori Yakovlevich Perelman (, ; born 13June 1966) is a Russian mathematician and geometer who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman resigned from his ...
, shows that the
types of "singularities" that occur along a Ricci flow, corresponding to the
failure of convergence, encodes deep information about 3-dimensional topology.
The culmination of this work was a proof of the
geometrization conjecture
In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theor ...
first proposed by
William Thurston
William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds.
Thurst ...
in the 1970s, which can be thought of as
a classification of compact 3-manifolds.
On a
Kähler manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnol ...
, the Ricci curvature determines the first
Chern class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches ...
of the manifold (mod torsion). However, the Ricci curvature has no analogous
topological interpretation on a generic Riemannian manifold.
Global geometry and topology
Here is a short list of global results concerning manifolds with positive Ricci curvature; see also
classical theorems of Riemannian geometry. Briefly, positive Ricci curvature of a Riemannian manifold has strong topological consequences, while (for dimension at least 3), negative Ricci curvature has ''no'' topological implications. (The Ricci curvature is said to be positive if the Ricci curvature function
is positive on the set of non-zero tangent vectors
.) Some results are also known for pseudo-Riemannian manifolds.
#
Myers' theorem (1941) states that if the Ricci curvature is bounded from below on a complete Riemannian ''n''-manifold by
, then the manifold has diameter
. By a covering-space argument, it follows that any compact manifold of positive Ricci curvature must have finite
fundamental group
In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
.
Cheng (1975) showed that, in this setting, equality in the diameter inequality occurs if only if the manifold is
isometric to a sphere of a constant curvature
.
#The
Bishop–Gromov inequality states that if a complete
-dimensional Riemannian manifold has non-negative Ricci curvature, then the volume of a geodesic ball is less than or equal to the volume of a geodesic ball of the same radius in Euclidean
-space. Moreover, if
denotes the volume of the ball with center
and radius
in the manifold and
denotes the volume of the ball of radius
in Euclidean
-space then the function
is nonincreasing. This can be generalized to any lower bound on the Ricci curvature (not just nonnegativity), and is the key point in the proof of
Gromov's compactness theorem.)
#The Cheeger–Gromoll
splitting theorem states that if a complete Riemannian manifold
with
contains a ''line'', meaning a geodesic
such that
for all
, then it is isometric to a product space
. Consequently, a complete manifold of positive Ricci curvature can have at most one topological end. The theorem is also true under some additional hypotheses for complete
Lorentzian manifold
In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere non-degenerate bilinear form, nondegenerate. This is a generalization of a Riema ...
s (of metric signature
) with non-negative Ricci tensor ().
#Hamilton's first
convergence theorem for Ricci flow has, as a corollary, that the only compact 3-manifolds which have Riemannian metrics of positive Ricci curvature are the quotients of the 3-sphere by discrete subgroups of SO(4) which act properly discontinuously. He later extended this to allow for nonnegative Ricci curvature. In particular, the only simply-connected possibility is the 3-sphere itself.
These results, particularly Myers' and Hamilton's, show that positive Ricci curvature has strong topological consequences. By contrast, excluding the case of surfaces, negative Ricci curvature is now known to have ''no'' topological implications; has shown that any manifold of dimension greater than two admits a complete Riemannian metric of negative Ricci curvature. In the case of two-dimensional manifolds, negativity of the Ricci curvature is synonymous with negativity of the Gaussian curvature, which has very clear
topological implications. There are very few two-dimensional manifolds which fail to admit Riemannian metrics of negative Gaussian curvature.
Behavior under conformal rescaling
If the metric
is changed by multiplying it by a conformal factor
, the Ricci tensor of the new, conformally-related metric
is given by
where
is the (positive spectrum) Hodge Laplacian, i.e.,
the ''opposite'' of the usual trace of the Hessian.
In particular, given a point
in a Riemannian manifold, it is always
possible to find metrics conformal to the given metric
for which the
Ricci tensor vanishes at
. Note, however, that this is only pointwise
assertion; it is usually impossible to make the Ricci curvature vanish identically
on the entire manifold by a conformal rescaling.
For two dimensional manifolds, the above formula shows that if
is a
harmonic function
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f\colon U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that i ...
, then the conformal scaling
does not change the Ricci tensor (although it still changes its trace with respect
to the metric unless
.
Trace-free Ricci tensor
In
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
and
pseudo-Riemannian geometry, the
trace-free Ricci tensor (also called traceless Ricci tensor) of a
Riemannian or pseudo-Riemannian
-manifold
is the tensor defined by
where
and
denote the Ricci curvature
and
scalar curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
of
. The name of this object reflects the
fact that its
trace automatically vanishes:
However, it is quite an
important tensor since it reflects an "orthogonal decomposition" of the Ricci tensor.
The orthogonal decomposition of the Ricci tensor
The following, not so trivial, property is
It is less immediately obvious that the two terms on the right hand side are orthogonal
to each other:
An identity which is intimately connected with this (but which could be proved directly)
is that
The trace-free Ricci tensor and Einstein metrics
By taking a divergence, and using the contracted Bianchi identity, one sees that
implies
.
So, provided that and
is connected, the vanishing
of
implies that the scalar curvature is constant. One can then see
that the following are equivalent:
*
*
for some number
*
In the Riemannian setting, the above orthogonal decomposition shows that
is also equivalent to these conditions.
In the pseudo-Riemmannian setting, by contrast, the condition
does not necessarily imply
so the most that one can say is that
these conditions imply
In particular, the vanishing of trace-free Ricci tensor characterizes
Einstein manifolds, as defined by the condition
for a number
In
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, this equation states
that
is a solution of Einstein's vacuum field
equations with
cosmological constant
In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant,
is a coefficient that Albert Einstein initially added to his field equations of general rel ...
.
Kähler manifolds
On a
Kähler manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnol ...
, the Ricci curvature determines the
curvature form of the
canonical line bundle
. The canonical line bundle is the top
exterior power
In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
of the bundle of holomorphic
Kähler differentials:
The Levi-Civita connection corresponding to the metric on
gives
rise to a connection on
. The curvature of this connection is
the 2-form defined by
where
is the
complex structure map on the
tangent bundle determined by the structure of the Kähler manifold. The Ricci
form is a
closed 2-form. Its
cohomology class is,
up to a real constant factor, the first
Chern class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches ...
of the canonical bundle,
and is therefore a topological invariant of
(for compact
)
in the sense that it depends only on the topology of
and the
homotopy class
In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A ...
of the complex structure.
Conversely, the Ricci form determines the Ricci tensor by
In local holomorphic coordinates
, the Ricci form is given by
where is the
Dolbeault operator and
If the Ricci tensor vanishes, then the canonical bundle is flat, so the
structure group
In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
can be locally reduced to a subgroup of the
special linear group
. However, Kähler manifolds
already possess
holonomy in
, and so the (restricted)
holonomy of a Ricci-flat Kähler manifold is contained in
.
Conversely, if the (restricted) holonomy of a 2
-dimensional Riemannian
manifold is contained in
, then the manifold is a Ricci-flat
Kähler manifold .
Generalization to affine connections
The Ricci tensor can also be generalized to arbitrary
affine connection
In differential geometry, an affine connection is a geometric object on a smooth manifold which ''connects'' nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values i ...
s,
where it is an invariant that plays an especially important role in the study of
projective geometry
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
(geometry associated to
unparameterized geodesics) . If
denotes an affine connection, then the curvature tensor
is the
(1,3)-tensor defined by
for any vector fields
. The Ricci tensor is defined to be the trace:
In this more general situation, the Ricci tensor is symmetric if and only if there
exists locally a parallel
volume form
In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold M of dimension n, a volume form is an n-form. It is an element of the space of sections of t ...
for the connection.
Discrete Ricci curvature
Notions of Ricci curvature on discrete manifolds have been defined on graphs and
networks, where they quantify local divergence properties of edges. Ollivier's
Ricci curvature is defined using optimal transport theory.
A different (and earlier) notion, Forman's Ricci curvature, is based on
topological arguments.
See also
*
Curvature of Riemannian manifolds
*
Scalar curvature
In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
*
Ricci calculus Ricci () is an Italian surname. Notable Riccis Arts and entertainment
* Antonio Ricci (painter) (c.1565–c.1635), Spanish Baroque painter of Italian origin
* Christina Ricci (born 1980), American actress
* Clara Ross Ricci (1858-1954), British ...
*
Ricci decomposition
*
Ricci-flat manifold
*
Christoffel symbols
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...
*
Introduction to the mathematics of general relativity
Footnotes
References
*.
*.
*.
*Forman (2003), "Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature", ''Discrete & Computational Geometry'', 29 (3): 323–374.
doi:10.1007/s00454-002-0743-x. ISSN 1432-0444
*.
*.
*.
*.
*
*.
*Ollivier, Yann (2009), "Ricci curvature of Markov chains on metric spaces", ''Journal of Functional Analysis'' 256 (3): 810–864.
doi:10.1016/j.jfa.2008.11.001. ISSN 0022-1236
*.
*
*
*Najman, Laurent and Romon, Pascal (2017): Modern approaches to discrete curvature, Springer (Cham), Lecture notes in mathematics
External links
*Z. Shen,
C. Sormanibr>
"The Topology of Open Manifolds with Nonnegative Ricci Curvature"(a survey)
*G. Wei
"Manifolds with A Lower Ricci Curvature Bound"(a survey)
{{tensors
Curvature (mathematics)
Differential geometry
Riemannian geometry
Riemannian manifolds
Tensors in general relativity