Resonance (quantum Field Theory)
   HOME

TheInfoList



OR:

In
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
, a resonance is the peak located around a certain energy found in
differential cross section In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflect ...
s of scattering experiments. These peaks are associated with
subatomic particle In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, lik ...
s, which include a variety of
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
s,
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nucleus, atomic nuclei ...
s and
hadron In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electri ...
s (such as
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number. Until the 1960s, nucleons were thought to be ele ...
s,
delta baryon The Delta baryons (or baryons, also called Delta resonances) are a family of subatomic particle made of three up or down quarks (u or d quarks), the same constituent quarks that make up the more familiar protons and neutrons. Properties Fo ...
s or
upsilon meson The Upsilon meson () is a quarkonium state (i.e. flavourless meson) formed from a bottom quark and its antiparticle. It was discovered by the E288 experiment team, headed by Leon Lederman, at Fermilab in 1977, and was the first particle containi ...
s) and their excitations. In common usage, "resonance" only describes particles with very short lifetimes, mostly high-energy hadrons existing for or less. It is also used to describe particles in intermediate steps of a decay, so-called
virtual particle A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emer ...
s. The width of the resonance (''Γ'') is related to the
mean lifetime A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and ( lambda) is a positive ra ...
(''τ'') of the particle (or its excited state) by the relation :\Gamma=\frac where =\frac and ''h'' is the
Planck constant The Planck constant, or Planck's constant, denoted by h, is a fundamental physical constant of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a ...
. Thus, the lifetime of a particle is the direct
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse, the inverse of a number that, when added to the ...
of the particle's resonance width. For example, the charged
pion In particle physics, a pion (, ) or pi meson, denoted with the Greek alphabet, Greek letter pi (letter), pi (), is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the ...
has the second-longest lifetime of any meson, at . Therefore, its resonance width is very small, about or about 6.11
MHz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose formal expression in terms of SI base u ...
. Pions are generally not considered as "resonances". The charged
rho meson In particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as , and . Along with pions and omega mesons, the rho meson carries the nuclear force within the atomic nucleus. Afte ...
has a very short lifetime, about . Correspondingly, its resonance width is very large, at 149.1
MeV In physics, an electronvolt (symbol eV), also written electron-volt and electron volt, is the measure of an amount of kinetic energy gained by a single electron accelerating through an electric potential difference of one volt in vacuum. When us ...
or about 36 ZHz. This amounts to nearly one-fifth of the particle's
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
.K.A. Olive ''et al''. (Particle Data Group) (2016)
Particle listings –
/ref>


See also

* Baryon resonance particles *
Roper resonance The Roper resonance, also known as P11(1440) or N(1440)1/2+, is an unstable nucleon resonance with a mass of about 1,440 MeV/c2 and with a relatively wide full Breit-Wigner width Γ ≈ 300 MeV/c2. It contains three quarks (up (u) or down (d)) wit ...
*
Giant resonance In nuclear physics, giant resonance is a high-frequency collective excitation of atomic nuclei, as a property of many-body quantum systems. In the macroscopic interpretation of such an excitation in terms of an oscillation, the most prominent gia ...
*
Feshbach resonance In physics, a Feshbach resonance can occur upon collision of two slow atoms when they temporarily stick together forming an unstable compound with short lifetime (so-called resonance). It is a feature of many-body systems in which a bound state ...
*
Fano resonance In physics, a Fano resonance is a type of resonant scattering phenomenon that gives rise to an asymmetric line-shape. Interference between a background and a resonant scattering process produces the asymmetric line-shape. It is named after Italian ...
*
Feshbach–Fano partitioning In quantum mechanics, and in particular in scattering theory, the Feshbach–Fano method, named after Herman Feshbach and Ugo Fano, separates (partitions) the resonant and the background components of the wave function and therefore of the associat ...
*
Resonances in scattering from potentials In quantum mechanics, resonance cross section occurs in the context of quantum scattering theory, which deals with studying the scattering of quantum particles from potentials. The scattering problem deals with the calculation of flux distribution ...
*
Levinson's theorem Levinson's theorem is an important theorem of scattering theory. In non-relativistic quantum mechanics, it relates the number of bound states in channels with a definite orbital momentum to the difference in phase of a scattered wave at infinite and ...
*
Relativistic Breit–Wigner distribution The relativistic Breit–Wigner distribution (after the 1936 nuclear resonance formula of Gregory Breit and Eugene Wigner) is a continuous probability distribution with the following probability density function,SePythia 6.4 Physics and Manual(pag ...


References

Scattering theory Particle physics {{particle-stub