In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a representation theorem is a
theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
that states that every abstract structure with certain properties is
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to another (abstract or concrete) structure.
Examples
Algebra
*
Cayley's theorem
In the mathematical discipline of group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group is isomorphic to a subgroup of a symmetric group.
More specifically, is isomorphic to a subgroup of the symmetric gro ...
states that every
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic iden ...
is
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a
permutation group
In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to ...
.
*
Representation theory
Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
studies properties of abstract groups via their
representations as
linear transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
s of
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s.
*
Stone's representation theorem
In mathematics, Stone's representation theorem for Boolean algebras states that every Boolean algebra is isomorphic to a certain field of sets. The theorem is fundamental to the deeper understanding of Boolean algebra that emerged in the first ha ...
for
Boolean algebras states that every Boolean algebra is isomorphic to a
field of sets
In mathematics, a field of sets is a mathematical structure consisting of a pair ( X, \mathcal ) consisting of a set X and a family \mathcal of subsets of X called an algebra over X that contains the empty set as an element, and is closed under t ...
.
*: A variant,
Stone's representation theorem for distributive lattices, states that every
distributive lattice
In mathematics, a distributive lattice is a lattice (order), lattice in which the operations of join and meet distributivity, distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice o ...
is isomorphic to a sublattice of the
power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
lattice of some set.
*: Another variant,
Stone's duality, states that there exists a duality (in the sense of an arrow-reversing equivalence) between the
categories of Boolean algebras and that of
Stone spaces.
* The
Poincaré–Birkhoff–Witt theorem states that every
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
embeds into the commutator Lie algebra of its
universal enveloping algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.
Universal enveloping algebras are used in the representa ...
.
*
Ado's theorem In abstract algebra, Ado's theorem is a theorem characterizing finite-dimensional Lie algebras.
Statement
Ado's theorem states that every finite-dimensional Lie algebra ''L'' over a field ''K'' of characteristic zero can be viewed as a Lie algeb ...
states that every finite-dimensional
Lie algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi ident ...
over a
field of
characteristic zero embeds into the Lie algebra of
endomorphism
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a g ...
s of some finite-dimensional vector space.
*
Birkhoff's HSP theorem states that every
model
A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , .
Models can be divided in ...
of an algebra ''A'' is the homomorphic image of a
subalgebra In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations.
"Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear opera ...
of a
direct product
In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abs ...
of copies of ''A''.
* In the study of
semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
s, the
Wagner–Preston theorem provides a representation of an
inverse semigroup In group (mathematics), group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that and , i.e. a regular semigr ...
''S'', as a homomorphic image of the set of
partial bijection
In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivale ...
s on ''S'', and the semigroup operation given by
composition
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
* Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include ...
.
Category theory
* The
Yoneda lemma
In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a ...
provides a
full and faithful limit-preserving embedding of any category into a category of
presheaves.
*
Mitchell's embedding theorem for
abelian categories
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.
The motivating prototypical example of an abelian category is the category of a ...
realises every
small
Small means of insignificant size
Size in general is the Magnitude (mathematics), magnitude or dimensions of a thing. More specifically, ''geometrical size'' (or ''spatial size'') can refer to three geometrical measures: length, area, or ...
abelian category as a full (and exactly embedded)
subcategory
In mathematics, specifically category theory, a subcategory of a category ''C'' is a category ''S'' whose objects are objects in ''C'' and whose morphisms are morphisms in ''C'' with the same identities and composition of morphisms. Intuitively, ...
of a
category of modules
In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ...
over some
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
.
*
Mostowski's collapsing theorem states that every well-founded extensional structure is isomorphic to a transitive set with the ∈-relation.
* One of the fundamental theorems in
sheaf
Sheaf may refer to:
* Sheaf (agriculture), a bundle of harvested cereal stems
* Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open s ...
theory states that every sheaf over a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
can be thought of as a sheaf of
sections of some (étalé) bundle over that space: the categories of sheaves on a topological space and that of
étalé spaces over it are equivalent, where the equivalence is given by the
functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
that sends a bundle to its sheaf of (local) sections.
Functional analysis
* The
Gelfand–Naimark–Segal construction embeds any
C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of contin ...
in an algebra of
bounded operator
In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y.
If X and Y are normed vector ...
s on some
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
.
* The
Gelfand representation
In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things:
* a way of representing commutative Banach algebras as algebras of continuous functions;
* the fact that for commutative C*-al ...
(also known as the commutative Gelfand–Naimark theorem) states that any commutative
C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of contin ...
is isomorphic to an algebra of continuous functions on its
Gelfand spectrum. It can also be seen as the construction as a duality between the category of commutative
C*-algebras and that of
compact Hausdorff space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it ...
s.
* The
Riesz representation theorem
The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the un ...
states that a
Hilbert space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
, such as the
square-integrable function
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value ...
space ''L''
2(''X'') on a manifold ''X'', any linear functional ''F'' is equal to the inner product with a fixed element
, i.e.
for all
. The more general
Riesz–Markov–Kakutani representation theorem has several versions, one of them identifying the dual space of ''C''
0(''X'') with the set of regular measures on ''X''.
Geometry
* The
Whitney embedding theorem
In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney:
*The strong Whitney embedding theorem states that any smooth real - dimensional manifold (required also to be Hausdorf ...
s embed any abstract
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
in some
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
.
* The
Nash embedding theorem
The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedding, embedded into some Euclidean space. Isometry, Isometric means preserving the length of ever ...
embeds an abstract
Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
isometrically in a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
.
Order Theory
* It is a basic result that every
partially ordered set
In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
is
isomorphic
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to a collection of
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
s ordered by
inclusion
Inclusion or Include may refer to:
Sociology
* Social inclusion, action taken to support people of different backgrounds sharing life together.
** Inclusion (disability rights), promotion of people with disabilities sharing various aspects of lif ...
(containment).
Economics
* A
preference representation theorem states conditions for the existence of a
utility function
In economics, utility is a measure of a certain person's satisfaction from a certain state of the world. Over time, the term has been used with at least two meanings.
* In a Normative economics, normative context, utility refers to a goal or ob ...
representing a
preference relation. Examples are
Von Neumann–Morgenstern utility theorem
In decision theory, the von Neumann–Morgenstern (VNM) utility theorem demonstrates that rational choice under uncertainty involves making decisions that take the form of maximizing the expected value of some cardinal utility function. The theo ...
and
Debreu's representation theorems.
See also
*
References
{{DEFAULTSORT:Representation Theorem
Mathematical theorems