
In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a reflection (also spelled reflexion) is a
mapping from a
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
to itself that is an
isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
with a
hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
as the set of
fixed points; this set is called the
axis
An axis (: axes) may refer to:
Mathematics
*A specific line (often a directed line) that plays an important role in some contexts. In particular:
** Coordinate axis of a coordinate system
*** ''x''-axis, ''y''-axis, ''z''-axis, common names ...
(in dimension 2) or
plane (in dimension 3) of reflection. The image of a figure by a reflection is its
mirror image
A mirror image (in a plane mirror) is a reflection (physics), reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical phenomenon, optical effect, it r ...
in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a
vertical axis (a ''vertical reflection'') would look like q. Its image by reflection in a
horizontal axis (a ''horizontal reflection'') would look like b. A reflection is an
involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.
The term ''reflection'' is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. The set of fixed points (the "mirror") of such an isometry is an
affine subspace
In mathematics, an affine space is a geometry, geometric structure (mathematics), structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance (mathematics), distance ...
, but is possibly smaller than a hyperplane. For instance a
reflection through a point is an involutive isometry with just one fixed point; the image of the letter p under it
would look like a d. This operation is also known as a
central inversion , and exhibits Euclidean space as a
symmetric space. In a
Euclidean vector space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' ...
, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a
hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
.
Some mathematicians use "flip" as a synonym for "reflection".
[
]
Construction

In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a
perpendicular
In geometry, two geometric objects are perpendicular if they intersect at right angles, i.e. at an angle of 90 degrees or π/2 radians. The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', � ...
from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.
To reflect point through the line using
compass and straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an Idealiz ...
, proceed as follows (see figure):
* Step 1 (red): construct a
circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
with center at and some fixed radius to create points and on the line , which will be
equidistant from .
* Step 2 (green): construct circles centered at and having radius . and will be the points of intersection of these two circles.
Point is then the reflection of point through line .
Properties
The
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
for a reflection is
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
with
determinant
In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
−1 and
eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
s −1, 1, 1, ..., 1. The product of two such matrices is a special orthogonal matrix that represents a rotation. Every
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
is the result of reflecting in an even number of reflections in hyperplanes through the origin, and every
improper rotation is the result of reflecting in an odd number. Thus reflections generate the
orthogonal group
In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
, and this result is known as the
Cartan–Dieudonné theorem
In mathematics, the Cartan–Dieudonné theorem, named after Élie Cartan and Jean Dieudonné, establishes that every orthogonal transformation in an ''n''-dimension (vector space), dimensional symmetric bilinear space can be described as the funct ...
.
Similarly the
Euclidean group
In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformati ...
, which consists of all isometries of Euclidean space, is generated by reflections in affine hyperplanes. In general, a
group generated by reflections in affine hyperplanes is known as a
reflection group. The
finite group
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
s generated in this way are examples of
Coxeter groups.
Reflection across a line in the plane
Reflection across an arbitrary line through the origin in
two dimensions can be described by the following formula
:
where
denotes the vector being reflected,
denotes any vector in the line across which the reflection is performed, and
denotes the
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
of
with
. Note the formula above can also be written as
:
saying that a reflection of
across
is equal to 2 times the
projection of
on
, minus the vector
. Reflections in a line have the eigenvalues of 1, and −1.
Reflection through a hyperplane in ''n'' dimensions
Given a vector
in
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, the formula for the reflection in the
hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
through the origin,
orthogonal
In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ...
to
, is given by
:
where
denotes the
dot product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
of
with
. Note that the second term in the above equation is just twice the
vector projection of
onto
. One can easily check that
*, if
is parallel to
, and
*, if
is perpendicular to .
Using the
geometric product, the formula is
:
Since these reflections are isometries of Euclidean space fixing the origin they may be represented by
orthogonal matrices. The orthogonal matrix corresponding to the above reflection is the
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
:
where
denotes the
identity matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the obje ...
and
is the
transpose
In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal;
that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
of a. Its entries are
:
where is the
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
.
The formula for the reflection in the affine hyperplane
not through the origin is
:
See also
*
Additive inverse
In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
*
Coordinate rotations and reflections
*
Householder transformation
*
Inversive geometry
*
Plane of rotation
*
Reflection mapping
*
Reflection group
*
Reflection symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a Reflection (mathematics), reflection. That is, a figure which does not change upon undergoing a reflection has reflecti ...
Notes
References
*
*
*
External links
Reflection in Lineat
cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet Union, Soviet-born Israeli Americans, Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow ...
Understanding 2D Reflectionan
Understanding 3D Reflectionby Roger Germundsson,
The Wolfram Demonstrations Project
The Wolfram Demonstrations Project is an open-source collection of interactive programmes called Demonstrations. It is hosted by Wolfram Research. At its launch, it contained 1300 demonstrations but has grown to over 10,000. The site won a Pa ...
.
{{Authority control
Euclidean symmetries
Functions and mappings
Linear operators
Transformation (function)